From 42f8321c8caaf42dcb99bb6ff2c9211f02f65927 Mon Sep 17 00:00:00 2001 From: Frh Date: Fri, 3 Jul 2020 18:28:24 -0700 Subject: [PATCH] Clean up notebooks, address review comments * Improve explanations of network, hybrid, and lattice parsers * Remove dead code from parser comparison notebook * Clean-up notebook variables to reduce size and make diffs cleaner * Revert changes that were peripheral to the core changes --- .deepsource.toml | 5 - .gitignore | 6 +- .travis.yml | 1 + camelot/image_processing.py | 50 +--- notebook-hybrid-parser.ipynb | 446 ++++++++++++++++++------------- parser-comparison-notebook.ipynb | 145 +++------- 6 files changed, 322 insertions(+), 331 deletions(-) diff --git a/.deepsource.toml b/.deepsource.toml index c98c682..e8edbba 100644 --- a/.deepsource.toml +++ b/.deepsource.toml @@ -1,10 +1,5 @@ version = 1 -test_patterns = [ - "tests/**", - "test_*.py" -] - exclude_patterns = [ "camelot/ext/**" ] diff --git a/.gitignore b/.gitignore index da5b19a..80fea8a 100644 --- a/.gitignore +++ b/.gitignore @@ -4,10 +4,8 @@ __pycache__/ build/ dist/ -prof/ *.egg-info/ .eggs/ -.tox/ .coverage coverage.xml @@ -18,6 +16,4 @@ _build/ htmlcov/ # vscode -.vscode - -.DS_Store \ No newline at end of file +.vscode \ No newline at end of file diff --git a/.travis.yml b/.travis.yml index d791413..e370649 100755 --- a/.travis.yml +++ b/.travis.yml @@ -1,3 +1,4 @@ +sudo: true language: python cache: pip addons: diff --git a/camelot/image_processing.py b/camelot/image_processing.py index 43e7c65..eedbbef 100644 --- a/camelot/image_processing.py +++ b/camelot/image_processing.py @@ -4,11 +4,8 @@ import cv2 import numpy as np -def adaptive_threshold( - imagename, process_background=False, - blocksize=15, c=-2): +def adaptive_threshold(imagename, process_background=False, blocksize=15, c=-2): """Thresholds an image using OpenCV's adaptiveThreshold. - Parameters ---------- imagename : string @@ -18,31 +15,24 @@ def adaptive_threshold( blocksize : int, optional (default: 15) Size of a pixel neighborhood that is used to calculate a threshold value for the pixel: 3, 5, 7, and so on. - - For more information, refer `OpenCV's adaptiveThreshold `_. # noqa + For more information, refer `OpenCV's adaptiveThreshold `_. c : int, optional (default: -2) Constant subtracted from the mean or weighted mean. Normally, it is positive but may be zero or negative as well. - - For more information, refer `OpenCV's adaptiveThreshold `_. # noqa - + For more information, refer `OpenCV's adaptiveThreshold `_. Returns ------- img : object numpy.ndarray representing the original image. threshold : object numpy.ndarray representing the thresholded image. - """ img = cv2.imread(imagename) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) if process_background: threshold = cv2.adaptiveThreshold( - gray, - 255, - cv2.ADAPTIVE_THRESH_GAUSSIAN_C, - cv2.THRESH_BINARY, blocksize, c + gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, blocksize, c ) else: threshold = cv2.adaptiveThreshold( @@ -57,12 +47,10 @@ def adaptive_threshold( def find_lines( - threshold, regions=None, - direction="horizontal", line_scale=15, iterations=0 + threshold, regions=None, direction="horizontal", line_scale=15, iterations=0 ): """Finds horizontal and vertical lines by applying morphological transformations on an image. - Parameters ---------- threshold : object @@ -76,14 +64,11 @@ def find_lines( line_scale : int, optional (default: 15) Factor by which the page dimensions will be divided to get smallest length of lines that should be detected. - The larger this value, smaller the detected lines. Making it too large will lead to text being detected as lines. iterations : int, optional (default: 0) Number of times for erosion/dilation is applied. - - For more information, refer `OpenCV's dilate `_. # noqa - + For more information, refer `OpenCV's dilate `_. Returns ------- dmask : object @@ -93,7 +78,6 @@ def find_lines( List of tuples representing vertical/horizontal lines with coordinates relative to a left-top origin in image coordinate space. - """ lines = [] @@ -104,15 +88,13 @@ def find_lines( size = threshold.shape[1] // line_scale el = cv2.getStructuringElement(cv2.MORPH_RECT, (size, 1)) elif direction is None: - raise ValueError( - "Specify direction as either 'vertical' or 'horizontal'" - ) + raise ValueError("Specify direction as either 'vertical' or 'horizontal'") if regions is not None: region_mask = np.zeros(threshold.shape) for region in regions: x, y, w, h = region - region_mask[y:y + h, x:x + w] = 1 + region_mask[y : y + h, x : x + w] = 1 threshold = np.multiply(threshold, region_mask) threshold = cv2.erode(threshold, el) @@ -121,14 +103,12 @@ def find_lines( try: _, contours, _ = cv2.findContours( - threshold.astype(np.uint8), cv2.RETR_EXTERNAL, - cv2.CHAIN_APPROX_SIMPLE + threshold.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE ) except ValueError: # for opencv backward compatibility contours, _ = cv2.findContours( - threshold.astype(np.uint8), cv2.RETR_EXTERNAL, - cv2.CHAIN_APPROX_SIMPLE + threshold.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE ) for c in contours: @@ -145,21 +125,18 @@ def find_lines( def find_contours(vertical, horizontal): """Finds table boundaries using OpenCV's findContours. - Parameters ---------- vertical : object numpy.ndarray representing pixels where vertical lines lie. horizontal : object numpy.ndarray representing pixels where horizontal lines lie. - Returns ------- cont : list List of tuples representing table boundaries. Each tuple is of the form (x, y, w, h) where (x, y) -> left-top, w -> width and h -> height in image coordinate space. - """ mask = vertical + horizontal @@ -185,7 +162,6 @@ def find_contours(vertical, horizontal): def find_joints(contours, vertical, horizontal): """Finds joints/intersections present inside each table boundary. - Parameters ---------- contours : list @@ -196,7 +172,6 @@ def find_joints(contours, vertical, horizontal): numpy.ndarray representing pixels where vertical lines lie. horizontal : object numpy.ndarray representing pixels where horizontal lines lie. - Returns ------- tables : dict @@ -204,13 +179,12 @@ def find_joints(contours, vertical, horizontal): in that boundary as their value. Keys are of the form (x1, y1, x2, y2) where (x1, y1) -> lb and (x2, y2) -> rt in image coordinate space. - """ joints = np.multiply(vertical, horizontal) tables = {} for c in contours: x, y, w, h = c - roi = joints[y:y + h, x:x + w] + roi = joints[y : y + h, x : x + w] try: __, jc, __ = cv2.findContours( roi.astype(np.uint8), cv2.RETR_CCOMP, cv2.CHAIN_APPROX_SIMPLE @@ -229,4 +203,4 @@ def find_joints(contours, vertical, horizontal): joint_coords.append((c1, c2)) tables[(x, y + h, x + w, y)] = joint_coords - return tables + return tables \ No newline at end of file diff --git a/notebook-hybrid-parser.ipynb b/notebook-hybrid-parser.ipynb index dd87460..d741ab5 100644 --- a/notebook-hybrid-parser.ipynb +++ b/notebook-hybrid-parser.ipynb @@ -4,64 +4,31 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Common import and setup\n" + "# Hybrid Parser step-by-step\n", + "\n", + "This notebook describes the algorithms behind the hybrid parser, which blends the results of the network parser (text based) and the lattice parser (image based).\n", + "\n", + "You can modify the section below to point to a pdf or your choice to visualize how the algorithm analyzes it. By default, it points to one of the test .pdfs included with camelot.\n", + "\n", + "You can also use the `parser-comparison-notebook` notebook to compare the parsers results side-by-side." ] }, { "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": "'/Users/francoishuet/Code/camelot/camelot/__init__.py'" - }, - "metadata": {}, - "execution_count": 1 - } - ], - "source": [ - "import os, sys, time, pytest\n", - "\n", - "import matplotlib.pyplot as plt\n", - "from matplotlib import patches, lines\n", - "import numpy as np\n", - "import pandas as pd\n", - "from pandas.testing import assert_frame_equal\n", - "\n", - "import pdfminer\n", - "\n", - "from IPython.display import display\n", - "\n", - "# Make sure we use the local version of camelot if it is here\n", - "sys.path.insert(0, os.path.abspath(''))\n", - "\n", - "import camelot\n", - "from camelot.core import Table, TableList, TextEdges\n", - "from camelot.__version__ import generate_version\n", - "from camelot.utils import get_text_objects, text_in_bbox\n", - "from camelot.parsers.stream import Stream\n", - "from camelot.parsers.network import Network\n", - "from camelot.handlers import PDFHandler\n", - "from camelot.plotting import draw_pdf\n", - "from tests.data import *\n", - "\n", - "testdir = os.path.dirname(os.path.abspath('.'))\n", - "testdir = os.path.join(testdir, \"camelot/tests/files\")\n", - "\n", - "# Set up plots to be large enough for visualization\n", - "\n", - "# To check which library we're using\n", - "camelot.__file__\n" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, + "execution_count": null, + "metadata": { + "tags": [] + }, "outputs": [], "source": [ + "# Bootstrap and common imports\n", + "import os, sys, time\n", + "sys.path.insert(0, os.path.abspath('')) # Prefer the local version of camelot if available\n", + "import camelot\n", + "\n", + "print(f\"Using Camelot v{camelot.__version__} from file {camelot.__file__}.\")\n", + "\n", + "# Select a pdf to analyze.\n", "kwargs = {}\n", "data = None\n", "# pdf_file = \"vertical_header.pdf\" # test_network_vertical_header\n", @@ -76,68 +43,33 @@ "# pdf_file, kwargs = \"detect_vertical_false.pdf\", {\"strip_text\": \" ,\\n\"} # data_stream_strip_text\n", "# pdf_file, kwargs, data = \"tabula/m27.pdf\", {\"columns\": [\"72,95,209,327,442,529,566,606,683\"], \"split_text\": True, }, data_stream_split_text # data_stream_split_text\n", "# pdf_file = \"clockwise_table_2.pdf\" # test_network_table_rotated / test_stream_table_rotated\n", - "# pdf_file = \"vertical_header.pdf\"\n", + "pdf_file = \"vertical_header.pdf\"\n", "\n", "# pdf_file = \"twotables_2.pdf\"\n", - "pdf_file = \"camelot-issue-132-multiple-tables.pdf\"\n", + "# pdf_file = \"camelot-issue-132-multiple-tables.pdf\"\n", "# pdf_file, kwargs, data = \"edge_tol.pdf\", {\"edge_tol\": 500}, data_stream_edge_tol\n", "# pdf_file, kwargs, data = \"edge_tol.pdf\", {}, data_stream_edge_tol\n", "\n", - "filename = os.path.join(testdir, pdf_file)" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": "Found 2 tables (7x4, 3x3) in 0.18s\n" - }, - { - "output_type": "display_data", - "data": { - "text/plain": " 0 1 2 3\n0 1 Ghfhbdhj 1 \n1 Vgvhgh Hj Hj Hj\n2 Hj Hj Hj Hj\n3 Hj Hj J Hj\n4 V C D Gfhj\n5 Hjb B Jhbh Hj\n6 Hjdhshj Hjhjhh Ddnj dsxv", - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
0123
01Ghfhbdhj1
1VgvhghHjHjHj
2HjHjHjHj
3HjHjJHj
4VCDGfhj
5HjbBJhbhHj
6HjdhshjHjhjhhDdnjdsxv
\n
" - }, - "metadata": {} - }, - { - "output_type": "display_data", - "data": { - "text/plain": " 0 1 2\n0 Trtrt H Gh\n1 Gh V Hv\n2 Hv Bhjb hg", - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
012
0TrtrtHGh
1GhVHv
2HvBhjbhg
\n
" - }, - "metadata": {} - }, - { - "output_type": "execute_result", - "data": { - "text/plain": "
", - "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", - "image/png": "iVBORw0KGgoAAAANSUhEUgAABrIAAAL6CAYAAAB6q8YDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdd3ic1Zm4//uMmm25SO6Wm2yDbULvMZheTIfQa2BD2n6zWZKwu6HXrAP5LdmQbHbZ3Ww2gQBLb6HHYJoxBmNMAHdjsC3bWLblJlltzu+PGcmScAVJM0j357rm8sxbzjx6NJIfzTPvOSHGiCRJkiRJkiRJkpRtEpkOQJIkSZIkSZIkSdoSG1mSJEmSJEmSJEnKSjayJEmSJEmSJEmSlJVsZEmSJEmSJEmSJCkr2ciSJEmSJEmSJElSVrKRJUmSJEmSJEmSpKxkI0uSJEnqhEIIF4UQXtjG/skhhG9/wbH/EEL42RePboeeo83i38aYl4UQXm/NMbNNCGFDCGFkpuOQJEmSpAY2siRJkqQOKoQwPoQwJYSwNoSwOoTwRgjhQIAY470xxuMzHeMX1VbxhxBKQwgx3dBpuM1s7ef5MkIIR4YQkunY1ocQ5oQQ/qY1xo4xdo8xLmyNsSRJkiSpNeRmOgBJkiRJrS+E0BP4M/C3wINAPnAYUJ3JuL5CimKMdZkOIoSQu5U4ymKMQ0IIATgReDKEMCXGOKedQ5QkSZKkNuUVWZIkSVLHNBogxnh/jLE+xlgVY3whxvg+fH6avBDCcSGE2emrt/4NCE0HCyF8K4QwK4SwJoTwfAhh+Haev28I4cX0FUOvNBwfQvhtCOGOFmM/GUL48ZYGSce5MD3OxyGEi9op/u0KIdwZQlgcQlgXQpgeQjgsvb0khFAVQujd5Nh9QwjlIYS8EEIihHBdCOGTEMJnIYS7Qwi90sc1XBF2eQjhU+ClbcUQU54BVgN7pcdIhBCuCiEsCCGsCiE82BBLCOHZEMLftfg6ZoYQzkzfjyGEXdL3C0II/xJC+DSEsCKEcFcIoWt63yshhLPS9w9Nn3dy+vExIYT3vmx+JUmSJAlsZEmSJEkd1VygPoTwxxDCiSGE4q0dGELoCzwKXAf0BRYAhzbZfzpwDXAm0A94Dbh/O89/EXBrerz3gHvT2/8IXBBCSDR57mOB+7YQVyHwa+DEGGMP4JD0WO0R/454G9gH6J2O/6EQQpcYYxnwJnBWk2MvBB6OMdYCl6VvRwEjge7Av7UY+whgN2DCtgJIN61OI/V1z09v/iFwRnqMEmAN8Nv0vvuBC5qc/zVgOPD0Foa/jVRDdB9gF2AwcEN63yvAkU1iXQgc3uTxK9uKW5IkSZJ2lI0sSZIkqQOKMa4DxgMR+G9gZfrKpwFbOPwk4MMYY0Oj5VfA8ib7vw/8PMY4Kz3N3URgn+1c1fR0jPHVGGM1cC0wLoQwNMY4DVgLHJM+7nxgcoxxxVbGSQJ7hBC6xhiXxRg/bKf4y0MIFenbP2zpgBjjn2KMq2KMdTHGO4ACYEx6932kG0bp6f/OZ3Oz7iLglzHGhTHGDcDVwPkhhKZTv98UY9wYY6zaSnwlIYQKoAp4DPhJjHFGk6/32hjjknT+bwLOTo//WIuv/SLg0fRxjdIxfxf4cYxxdYxxfTpv56cPeYVUwwpSDayfN3lsI0uSJElSq7GRJUmSJHVQ6cbNZTHGIcAepK7O+dUWDi0BFjc5LzZ9TOqKnTsbGjukprELwOAQwjUhhA3p211Nzmk63ob0OSXpTX8ELk7fvxi4ByA9dV3DWNfEGDcC55FqzCwLITwdQhjbmvFvYawGfWOMRenbv2zpgBDCP6SnK1ybHrcXqSujAB4h1bwbRKrRkyR1JVhDvJ80GeoTUusXN20yNo1/S8pijEVAT1JXrR3d4ut9rMnXOwuoBwakG1JPs7khdQGbr5Zrqh/QDZjeZJzn0tshdcXZ6HRjdB/gbmBo+uq4g4BXtxO/JEmSJO0QG1mSJElSJxBjnA38gVRDq6VlwNCGB+mrcYY22b8Y+F6Txk5RjLFrjHFKjHFijLF7+vb9Juc0Ha87qen3ytKb/gScHkLYm9T0eY+nY/x+k7Emprc9H2M8DhgEzCZ1dVmrxb/VhG1Hej2sfwLOBYrTTaW1pNfmijGuAV4g1Yi7EPi/dIONdB6aXg02DKgDml6VFtkB6SupfgrsGUI4I715ManpGJt+vV1ijEvT++8nNb3jOKAL8PIWhi4ndbXX7k3G6BVj7J5+3kpgOnAF8EGMsQaYAvwEWBBjLN+R+CVJkiRpe2xkSZIkSR1QCGFsCOHKEMKQ9OOhpK6+mbqFw58Gdg8hnJmefu7vgYFN9t8FXB1C2D09Vq8QwjnbCeGkEML4EEI+qbWypsYYFwPEGJeQWl/qHuCRrU2fF0IYEEI4Pb1WVjWwgdSVTe0R//b0INV8WgnkhhBuIHV1VFP3Ad8Ezqb5GmD3Az8OIYxIN/kmAg+kpz3caekm0h1sXr/qLuCfG6YPDCH0S68T1uAZUo20W9LP+7mcprf9N/CvIYT+6XEGhxCartn1CvB3bJ5GcHKLx5IkSZL0pdnIkiRJkjqm9cDBwFshhI2kGlgfAFe2PDB99cw5wG3AKmBX4I0m+x8Dbgf+L4SwLj3Oidt5/vuAG0lN47c/m6cSbPBHYE/S0wpuRYLUFT5l6XGOAP62neLfnudJTbU3l9TUgJv4/HSAT6ZjWR5jnNlk++9Jfd2vAh+nz/3hl4zn98CwEMKpwJ3p534hhLCe1Pf+4IYD01dxPQocS/MGW0s/BeYDU9N5+wub1wCDVMOqB5unEWz5WJIkSZK+tLB5dgtJkiRJah8hhMNJTTE4PPpHiSRJkiRpK7wiS5IkSVK7CiHkkVpb6Xc2sSRJkiRJ22IjS5IkSVK7CSHsBlQAg4BfZTgcSZIkSVKWc2pBSZIkSZIkSZIkZSWvyJIkSZIkSZIkSVJWspElSZIkSZIkSZKkrGQjS5IkSZIkSZIkSVnJRpYkSZIkSZIkSZKyko0sSZIkSZIkSZIkZSUbWZIkSZIkSZIkScpKNrIkSZIkSZIkSZKUlWxkSZIkSZIkSZIkKSvZyJIkSZIkSZIkSVJWspElSZIkSZIkSZKkrGQjS5IkSZIkSZIkSVnJRpYkSZIkSZIkSZKyko0sSZIkSZIkSZIkZSUbWZIkSZIkSZIkScpKNrIkSZIkSZIkSZKUlWxkSZIkSZIkSZIkKSvZyJIkSZIkSZIkSVJWspElSZIkSZIkSZKkrGQjS5IkSZIkSZIkSVnJRpYkSZIkSZIkSZKyko0sSZIkSZIkSZIkZSUbWZIkSZIkSZIkScpKNrIkSZIkSZIkSZKUlWxkSZIkSZIkSZIkKSvZyJIkSZIkSZIkSVJWspElSZIkSZIkSZKkrGQjS5IkSZIkSZIkSVnJRpYkSZIkSZIkSZKyko0sSZIkSZIkSZIkZSUbWZIkSZIkSZIkScpKNrIkSZIkSZIkSZKUlWxkSZIkSZIkSZIkKSvZyJIkSZIkSZIkSVJWspElSZIkSZIkSZKkrGQjS5IkSZIkSZIkSVnJRpYkSZIkSZIkSZKyko0sSZIkSZIkSZIkZSUbWZIkSZIkSZIkScpKNrIkSZIkSZIkSZKUlWxkSZIkSZIkSZIkKSvZyJIkSZIkSZIkSVJWspElSZIkSZIkSZKkrGQjS5IkSZIkSZIkSVnJRpYkSZIkSZIkSZKyko0sSZIkSZIkSZIkZSUbWZIkSZIkSZIkScpKNrIkSZIkSZIkSZKUlWxkSZIkSZIkSZIkKSvZyJIkSZIkSZIkSVJWspElSZIkSZIkSZKkrGQjS5IkSZIkSZIkSVnJRpYkSZIkSZIkSZKyko0sSZIkSZIkSZIkZSUbWZIkSZIkSZIkScpKNrIkSZIkSZIkSZKUlWxkSZIkSZIkSZIkKSvZyJIkSZIkSZIkSVJWspElSZIkSZIkSZKkrGQjS5IkSZIkSZIkSVnJRpYkSZIkSZIkSZKyko0sSZIkSZIkSZIkZSUbWZIkSZIkSZIkScpKNrIkSZIkSZIkSZKUlWxkSZIkSZIkSZIkKSvZyJI6iBDCohDCsV/gvNIQQgwh5O7EOdeEEH7X2rFIkiTtDOuftpHOzS6ZjkOSJEmSwEaWpC8gxjgxxvjtthg7hHBZCOH1bBtLkiR1btY/kiRJkpQZNrIk7ZSd+eSyJElSR2D9I0mSJEmZYyNL6lj2CSG8H0JYG0J4IITQBSCE8EEI4dSGg0IIeSGE8hDCvk3O/VYIoSyEsCyE8A9Njr0phPBwCOFPIYR1wGXpbX9qcswlIYRPQgirQgjXftHgQwi7AXcB40IIG0IIFentBSGEfwkhfBpCWBFCuCuE0DW975kQwh1Nxvi/EMLvtzaWJEnqcKx/tlP/bGus9P5/TOegLITwrRbx9QkhPBVCWBdCeDuE8LOmV3yFEMaGEF4MIawOIcwJIZz7RXMhSZIkSVtiI0vqWM4FTgBGAHsBl6W33w1c3OS4k4BlMcYZTbYdBewKHA/8tMUaD6cDDwNFwL1NnzCE8DXgP4BLgBKgDzDkiwQfY5wFfB94M8bYPcZYlN51GzAa2AfYBRgM3JDe9y3gkhDC0SGEi4CDgCu2MZYkSepYrH+2X/9sdawQwgnAPwDHpXPRcp2v3wIbgYHApelbQx4KgReB+4D+wPnAv6fzI0mSJEmtwkaW1LH8OsZYFmNcDTxF6s0KgD8BJ4UQeqYfXwLc0+Lcm2OMG2OMfwX+F7igyb43Y4yPxxiTMcaqFuedDfw5xvhqjLEauB5IttYXFEIIwHeBH8cYV8cY1wMTSb1RQoxxOfC3wB+BO4Fvpo+RJEmdg/XPNuqf7Y1FqhH4vzHGD2KMG4GbmpybA5wF3BhjrIwxfpR+zganAItijP8bY6xLNwkfAc5plURIkiRJEjaypI5meZP7lUB3gBhjGfAGcFYIoQg4kRafLAYWN7n/CalPF29pX0slTfen3wBZtaUDQwjD0tPcbAghbNjO19KgH9ANmB5CqEhPkfNcenuDp4AcYE6M0cXNJUnqXKx/tl3/bG+sZl8LqTw0PTe3xf6m94cDBzeMmx77IlJXb0mSJElSq3DRYqnz+CPwbVI/92/GGJe22D8UmJ2+Pwwoa7IvbmPcZcBuDQ9CCN1ITa/zOTHGT0m/ubQNLZ+rHKgCdt9CzA3+GZgFjAghXBBjvH8H4pYkSR2f9c/2x1pGKg8NhjW5vxKoIzVt4tz0tqbHLgZeiTEet5UYJUmSJOlL84osqfN4HNgPuILUmhEtXR9C6BZC2B34G+CBHRz3YeCUEML4EEI+cAtf7nfLCmBIeixijEngv4F/DSH0BwghDA4hTEjfPzwd7zdJrdnwmxDC4C2NJUmSOp1OX/9sbyzgQeCyEMLX0g25GxuCijHWA48CN6XzNDb9nA3+DIwOIVwSQshL3w4MIeyGJEmSJLUSG1lSJ5Fe2+ERUguhP7qFQ14B5gOTgH+JMb6wg+N+CPyA1CLfy4A1wJIvEepLwIfA8hBCeXrbT9OxTQ0hrAP+AoxJr3lxN/B3McalMcbXgP8B/je9HsSWxpIkSZ2E9c+2x0p/Lc8Cv0qfNz/9b1N/B/QiNYXjPcD9QHX63PXA8aTW2ypLH3M7UPAlciFJkiRJzYQYnXlL6ixCCDcAo2OMF2c6FkmSpPZg/dO6Qgi3AwNjjJdmOhZJkiRJnYNrZEmdRAihN3A5cEmmY5EkSWoP1j9fXno6wXzgr8CBpPL57YwGJUmSJKlTcWpBqRMIIXyH1GLcz8YYX810PJIkSW3N+qfV9CA1LeNGUmuI3QE8kdGIJEmSJHUqTi0oSZIkSZIkSZKkrOQVWZIkSZIkSZIkScpKNrIkSZIkSZIkSZKUlXIzHQBA3759Y2lpaabDkCRJ27Bo0SLKy8tDpuOQtZMkSV8F1k6SJEmtIysaWaWlpbzzzjuZDkOSJG3DAQcckOkQlGbtJElS9rN2kiRJah1OLShJkiRJkiRJkqSsZCNLkiRJkiRJkiRJWclGliRJkiRJkiRJkrKSjSxJkiRJkiRJkiRlJRtZkiRJkiRJkiRJyko2siRJkiRJkiRJkpSVbGRJkiRJkiRJkiQpK9nIkiRJkiRJkiRJUlaykSVJkiRJkiRJkqSsZCNLkiRJkiRJkiRJWclGliRJkiRJkiRJkrKSjSxJkiRJkiRJkiRlJRtZkiRJkiRJkiRJyko2siRJkiRJkiRJkpSVbGRJkiRJkiRJkiQpK9nIkiRJkiRJkiRJUlaykSVJkiRJkiRJkqSsZCNLkiRJkiRJkiRJWclGliRJkiRJkiRJkrKSjSxJkiRJkiRJkiRlJRtZkiRJkiRJkiRJyko2siRJkiRJkiRJkpSVbGRJkiRJkiRJkiQpK9nIkiRJkiRJkiRJUlaykSVJkiRJkiRJkqSsZCNLkiRJkiRJkiRJWclGliRJkiRJkiRJkrKSjSxJkiRJkiRJkiRlJRtZkiRJkiRJkiRJyko2siRJkiRJkiRJkpSVbGRJkiRJkiRJkiQpK9nIkiRJkiRJkiRJUlaykSVJkiRJkiRJkqSsZCNLkiRJkiRJkiRJWclGliRJkiRJkiRJkrKSjSxJkiRJkiRJkiRlJRtZkiRJkiRJkiRJyko2siRJkiRJkiRJkpSVbGRJkiRJkiRJkiQpK9nIkiRJkiRJkiRJUlaykSVJkiRJkiRJkqSsZCNLkiRJkiRJkiRJWclGliRJkiRJkiRJkrKSjSxJkiRJkiRJkiRlJRtZkiRJkiRJkiRJykq5mQ5AkiRJ2pLB/99gyirLAHjqvKc4ZewphJtD4/54Y8xUaJ1C4uYEkeY5Nuftw9xnhnmXJEmSspNXZEmSJCkrfXe/7zJ+8PjGx4mbU6VrwxvLTZtaan3JG5PEG2Njvq8ff32GI+o8zH1mmHdJkiQpO9nIkiRJUla68Zgbee3brzU+bnmlhNrHiH8dAcAtx9yS4Ug6H3OfGeZdkiRJyi42siRJkiRt1aJ1izIdQqdl7jPDvEuSJEnZxUaWJEmSpG06a/RZmQ6h0zL3mWHeJUmSpOxhI0uSJElfCQHXxGpvh/3PYQA8fMHDGY6k8zH3mWHeJUmSpOxjI0uSJElZ6d4Z9xJuTjWvTn3g1MY1shq2xRtdM6utvb7k9UyH0GmZ+8ww75IkSVL2yc10AJIkSdKWXLTvRVy070WZDqNTs1mYOeY+M8y7JEmSlH28IkuSJEmSJEmSJElZySuy2kl9fT3l5eUkk8lMhyJJagN9+vQhPz8/02FIHUIiATFGli//zNpJkjooaydJkiTtKBtZ7aS8vJyJEydy/PHHZzqUTqWmpoYnnniCs88+mxBcIL69xBh55JFHOO200/zjtJ09/fTTHHLIIRQXF2c6lE5lypQpnH322ey7776ZDkX6yps2DWJ6Zi9rp/Zn7ZQZ1k6ZY+2UGdZOkiRJ2hk2stpJMpmkX79+nHzyyZkOpVOpqqpi6tSpnHjiieTk5GQ6nE4jmUzy+uuvc/zxx1NYWJjpcDqVmTNnctRRRzF48OBMh9KprFy5krq6ukyHIXUI48ZB//7w2Wc0q53C1++AuafC6KeIU6/McJQdV8vaKRxzFSw6CkpfJk66LdPhdVgta6dw7plQvhv0nUV88NFMh9ehtaydwhWl0GsJrB1CvHNRRmPryKydJEmStDNcIysLxBidNicDYozU19dTX19PjJHa2lqWLl1KjLHZMUuWLOHTTz+lrKyMmpqaxn21tbWUlZU1O77peQ3HL126tNkfaTFGqqurt3heZ9Dweu+sX38mNM35tvJfV1fH/PnzWbVqVeO2jRs3snLlStatW9ds+5aeo66ujvr6+q0es379elatWsXatWupqKhodm5tbW2z34PJZJIlS5Z87ndjMpnkk08+2erPnqSvttmzIZmEFSuabw9fvwPe+gms2RXe+gnh63dYO7WDcMxV8NLPYeHx8NLPCcdcZe3UDsK5Z8Jjf4LJN8NjfyKce6a1UzsJV5RC8SeQqIfiTwhXlFo7SZIkSVnAK7IyKMbIv/7rOp58chrFxb3Zf//9G/cNGADf+U4Gg+vg/v3fN/HsszMoLy8nJyeXYcOGMXjwYP7ylymcccaZjVdvrV+/nmeffYM99tiDOXPmcPjhh9OnT18A1q7dyF/+8iZnnHHG5672SiYjTzwxlcMPP4yXX57ChAkT6NGjJ5D64/add95m/Pjx5OTkdarv9b//ew0vvfQhS5cuYcKEE8jNzQN8vbe1225byeuvz+frXx9HXV0dr732GuPHH0J+fpdmx82f/zEffvghBx54ACUlqW0LFy5j0aJPGThwAGvXrmXcuEO2+Bwxwvvvf0BRUTHDhw/f4jGzZy9h1apVFBYWUl9fx/77H9h47rRp0xk5ciT9+vUHoLq6hscff50zz/wGeXkFjWOsWrWKl16axr777sOoUTBwoK8dqSPZc0/Y4oW8c09N30lPdffWlXihdVvpCtzOL34B0OIKrJduI7fZXw95QMsrgAMwZCtj5wElW9kXmuzb0pgFdGwJ4DZuvx2gyRVYdbnw0KPkPJShsDqFa7j22vTd65am/g1ABHot4aabrJ0kSZKkTLORlWHvvbecQYOqqaxcSGnp5kbWokWZi6mjizHy7LMzyM1dymWXnUAICdasWUOXLnXk5S0jmVzIpk3VjBkzhunTZ9G9+yoOPrg/ixe/RteuKygv/5ixY8fSo0ct+fllJJMLqa6uYcyY0UDg448/pqqqiry8pZSU1JGfv4z8/GWsWjWX3Xb7GgUFBfToMYohQ3JIJDrX93ru3Ap6917PggVzGDZsAg1LQHSmHGTC0qX1VFbOorR0HDU1Sdatm8mQIQdTVVXO/PkL6N27N3379mX58qnsumtv9tmnmOrqNSxcOJ+8vCp69lxFnz6FVFevYO3amfTuXcyQIUOprKxk9uzZdO3alX79+jF+/BByc3PJz6/io48+om/fvgwbNozVq1exaNHH5OWtpVevKnr2TLJhw3oqKmbQv39/Bg0qoVu3Urp3LyQ3dxPz5s0jhEBeXhnDhkU++2wxn322nLFjd2PBgpn067eBAw7oS1FR8LUjdTB1dalbw9JMN9xwNdddB4x+KnVFFumrCQ7+JacNGMY555zTeO6iRaSO1ZdSVVXFTTfdxMSJE8k9/trUFVkNjr6au869rkntVMC9997HiSeeSE1NQ+30LtOnT+e8887h4Ycf4bDDDqOyspKxY8dSXb2J++77P0444QRqaz9fO73yyiucddbZPPTQQ0yYMIENG9ana6c8li5dxpAhQ0gkEh3ye51MJrnmmmu4/vrr6f43l6SuyKrPg5xa+MbF7DPvEH74w79vXD+rI+YgUyZOnMill17K4MGDCVcMTl2R1WDtEIbtZe0kSZIkZZpTC2ZQCIFddx1NaWkprqXdfmpra1mwYCFHHnkkVVVVLF78aeO+srKlLFy4gNdff4NZs2axdu1a1q9fT0XFOmpqanj77bdZsWIFTz75FDHC0qVL+PTTT5g+fTpvv/0OH300iylT3mTFihUsXrwEgKqqSmbMeJdPP13MCy88z6ZNNTzxxOOdck74Pn36sf/++7leWQYsX76cl16axOTJk9mwYQNVVZU8/vgTFBTk89BDD1FeXp6eAmc169at48EHH2TTpmqmT59OMpl64/j992dSUbGGRx55hIqKCv7856eor6/npZcmMW/ePGbMmMFHH83ixRdfZNOmTVRUVFBZuZGHHnqITZtqePfdGTTMaDNjxnusXbuWhx56iMrKjbz22mt8+umnvPLKqyxYsJC5c+exbt1a1qxZwwsvvEB+fhfWrFlDRcVa1q5dx4YNGzKYTUltJcbNN4Bbbkk1UeLUK+HgX0LveXDwL7nqqAnWTu0gTroNjr4aRj0PR1/Nr077B2undhAffBS+cTEcfQN842LuOuZua6d2Eu9cBGvSV0etHs5l635n7SRJkiRlARtZGRZ8F6bdpdYJSpKTk8PGjZUsXVrGgw8+SH19kpKSwRx77DHss8/eLFmylBEjRjBkyBBGjBhBXl4exx13HIcddjjl5eXU19czePAQjjzySA477DDmzJnDhx9+wKGHjuOoo45m2LBhAHTt2o3jjjueQw89lLKyZcSY3OZc+B2Zr/fMyclJkJ+fT0FBPiEEamvrqK6upri4N0VFvSgpGcTQoUP52td2o76+noKCfA455FCOOuooEonU922//fbj8MOPoKioiNWrV7N+/XqKi4vp0aMnJSWDqK9PEmOS4uJi5s2bS0FBPsuXr6BHj54ccsghHH74YY1vPB900EEcfvgRdO3ajbVr11Ffn6S+vo758+dx5JFHMGHC8fTs2Yu8vNQnzxcvXkzPnr0YMWIEpaWlDBkyNFOplNROysqWN3scp14Jfz+Ge/7uygxF1DnFSbfBJSey/9oB1k7tKD74KBx2G/ec9uj2D1arincuAmD3l75n7SRJkiRlCRtZGZZqqkRixEWc20l+fj4DBgxkypQ3KSkpYb/99iWE1PciJydB6scifO57EUJo/DRsw76amk3U1NSyZk0FeXn5dOnShYqKCurqatm0aVP6vFQTwSbO5td7y/tqe/369Wf8+MMYN+4QCgsLqa1NLS7+/vszOf744+nWbfOiNHl5+VRWVlFbW8uGDRsbtzf9NHjDm4offvgBe+yxO0OHbl4P5etf/zrHHXccTz31Z6qrq9m4cSP19XVs3FjZ+Kni5p8sT21M/Yzlpj/1vIna2lq6devGBRdcQE5OgkmTJrVNciR9pVg7ZcaQIUOsnTLA2ilzrJ0kSZKk7OEaWRkUY+Sjjz5k2bKprF+/gSlT3uDQQ8dnOqwOL4TAuHHjePfdR7nvvvuIMcnQocPIz8+nuLgYgK5du9KjR3fy8/Po1asnIQSKiorIyckhkQj07t2b3NxcIMFjjz1GRUUFp5xyColE4Mknn2Lu3PkA5Obm0rt3bxKJHHJyYuP4ndXKlSt5880Xqays4tlnn+GEE06gS5eumQ6rw8vNzaGoqAhIvf579+5DTk4ONTU1VFZWMmnSJAoKCujevQddunSlT59i+vTpzUMPPciGDRspLR1Ot9QMdHUAACAASURBVG5d2bSpOwBFRUXk5eUBsHFjJe+99x51dZs/Kf/GG69TVraMgQMHMnz4cGbMmMEDDzzIunXr2G23sRQWdm08vri4mNzcvHRsCQ4++CCefvoZCgu70b17IWvXVjRO6XPggQeRl5dLjx492jN9krLMO++8w8yZ71k7tbMJEybw+OOPWzu1s7KyMl55ZbK1UwZYO0mSJEnZw0ZWho0ePYZjj90FSP0hovbRrVshF154EXV1tQCNU3CcffY5JBIJdt/9a6Q+6Zhg8ODBAJx55lnk5OQQQuC8884jNzeXH/7wh41jNvxxevnllwOpP3pzc3M555xz02/cwJlnfoOFCz+mR48enXKtgz59erP33mc1Ps7PL8hgNJ1H79592Xvv04DU6/T8889n3rx59O3bl4MPPphp095m9erVHHbY+MZP9p599lnU1dU3vk5Tn4pPffr35JNPYf369WzaVM1xxx3P0qVLmD9/PvX19YwYMYKRI0dQX586Nycnl/PPP7fFWJtjO+OMM9JrqVTQu3cx/fsPYLfddiORyCHGSG5uLt/4xjeA1Oslmaxn9OjR7Zc8SVlnn332Ya+99gSsndpT9+49rJ0yYODAAZx1lrVTJpx2mrWTJEmSlC1sZLWjZDJJTU1Ns21Np1wBqK9PLWJdVwc1NU4d8mXV1NSQTCapra1ttrZCfX0gxs1TdCSTqX2JRGj8HqQk08fXEULz45LJ+sb57xuOAdJT7NA4bsOxDVavXsVRRx1NjEnq6pId8nsdY6S+vp7a2tpmr/kYfb23tYbXe9O8J5OBEDbnO5EIjBw5kg0b1jNv3nxGj96VsWPHAqnvXcOblM2nw0l9fxp+Frp3786xxx7LggULKCzsxkEHHcTy5csYMmRIs3M3/1w0HYtmY61atYq99tqL4uJiksnmbwA1fdz0Z7Mhxmx57XS2tVuktpZIQIwDufnmLdVO+H9JG9p67dT897m1U+vaeu0Ufb23sS3VToC1UxuzdpIkSdLOsJHVjt58802uu+66FtuOomfPis8du25dEZWVL7dXaB1WbW0tU6ZM4frrr2+2zsLW8t5ePv10MW+99RbQMb/XMUZeffVV6urqGj9tDb7e28PUqVNZunRpsylktvd6Ly8vZ9as2V/4OcvL4ZNPPgVgyZKlX3icRYsW7fQ52fLamTVrFnvttVemw5A6hGnTNr9p+7naqRAeeujhLZ6XLb8Pvuq2WDttI+/tpVPWTr7e28WWaqftveatnb48aydJkiTtDBtZ7WjcuHFcffXVzbb9/vewfPnnjx04EL71rWPbKbKOq6qqiltvvZWf/exnJBKbP+27tbxnQkf8XscYue6667j22mvp1q1b43Zf723v9ttv55JLLqGkpKRxWza93ltbtrx27r777kyHIHUY48ZB//7w2WfNa6f8Q38NC+bwzKinuOnkv//cedny++CrrmXtlH/8jbD4WZ4Z+io3HXlzpsMDOub3umXtlH/BBVBxFc8UPcJNe97/ueM7Yg4ypWXtlP+TsVAIz4y4jpv6ffFmVbbKlteOtZMkSZJ2xnYbWSGEMcADTTaNBG4A7k5vLwUWAefGGNeE1Ec37wROAiqBy2KM77Zu2F9NiUSi2dUpAN/73s6NEWOkurqavLy8ra4TEGNk06ZNFBQUNGvedEZ1dXUkEglyc3Ob5WtLeW+Y/qPplVv6YpLJZGPem77mt5V3MPetYUfzDr7mW1NnXLdFW2ft9MXNng3JJKxYkZrWq6F2CgfdAW//JHXQ6p9wE78kTrtyh8a0dto5TWun3GOvh8n/nNqxYAI3cS3x5YmNx/r/SOtpWjvlX3ABPHE31OdDTg03cQHx4c1XB1k7ta6mtVP44SjoszC1o+9CbiofS/zNgsZjfc23HmsnSZIk7YztNrJijHOAfQBCCDnAUuAx4CpgUozxthDCVenHPwVOBHZN3w4G/iP9r1pYtmwZt95axqBB+xFCYPnyZVRXVzN8eOlWz4kRJk16jX333Yc+ffpt8Zj6+iTPPTeJI444gu7dezTbN2AAfOc7rflVfDVdddVcNm7swYABg1i3bi1lZUsZNKiEefPmsd9++5NIJMxVG7j11jIWLdrEiBEjqa7exJw5cxg9ejQzZrzHgQceQG5unnlvA3fcUcG775YxduxuJJN1fPDBh4wdO5YZM2aw995707VrN/MutSJrpy9uzz2hsHALO+afmr6TfvP47SvZ8feRA9BlB47puqMDdnBdgdv5xS8AJjbfNXlii7z7Zn7rSQC3cfvtAE2mtKvLhUceNu9t6hquvbbh7rLmu4oWc/PNtdZOkiRJUobt7NSCxwALYoyfhBBOB45Mb/8jMJnUmzGnA3fH1MfVpoYQikIIg2KMy7Y0YGeWl5fHpEkf8ZOfjKVbt2689dar7LnnngweXMtnn31GYWE3Cgq6EAIUFHQhmayjtraOED6huHgU+fm19OvXj9zcXDZt2sSqVeX07NmLgoICYvyYPn32J8b1DBjQj5yc1NUZX2Aa9Q7pvfdWsOuuqyktHcSiRat59923OOqoC+nbt4SSkkAI5qotzJlTQXX1PEpLR1JRUcULL7zCCSfsRmHhEEpKEuTkmPe28PHHVZSVvckJJ+xGTU2Sp556mWOP3ZXCwiEMGJBHXp55l9qQtdNOqKtL3RretL/hhqu57jpgl6fSV2Slr0Q58Jfc/cOf8OCDD7Lnnnuy6667brN2uvfeeznqqKPp0qXLVmun//7v/+Kss84mxvi52qnFEqcdWlVVFTfddBMTJ05sfkUWwJHXcs/lE1m06GMmT57MBRdcSHl5OSUlJYQQOl2uWlMymeSaa67h+uuvp/ull6avyMqDnFo4/Zvcc8bDVFSs4Z577uF73/s+K1asoKSkhJycHPP+JU2cOJFLL72UwYMHE344aPMVWQAVQxmyj7WTJEmSlGk728g6H2iYpH1AkzdYlgMD0vcHA4ubnLMkva3TvRmzPb1796Z//74sWrSIESNKWbnyM4YNG8ozzzxNbm4eH3zwAQceeCCLFy/mwgsv5P33Z7J+/Xrq6up48cUXKCgooLi4mGOPPY5HH32U3r2LmTnzfS655BKqqzfx3HPPUVdXx8iRIzn66KOdAqOF5ctXMH/+PJYtSy0eVFVVyYsvvsAll3zTqS7a0Jo1q5k/fx4bNmygvr6euro6nn/+OS655BLz3oY2bFjPggXzqauro7q6GohMmjSJU089jd69e2c6PKkjs3baCU1mTCMEuOWWnwPXEaddmZpecMGpMOoprjrmBKqqKq2d2lh8eSLhqGtg8eEw9FXO7nuwtVM7iA8/TDj7bKjYFYrmcUzFydZO7ST+ZkFqesG+C6F8JDf2fY6PP15o7SRJkiRl2A4vAhBCyAdOAx5quS/9CeL4uZO2Pd53QwjvhBDeWbly5c6c2mEkEgnGjBnLX//6PosWLWL48FLy8vJYtmwZ48cfyoAB/Rk9elcgsnTpEj744ANGjRpFTk4ORx99DGeddTaLFn3C6tWrSCaTjB8/nl69etGnTx9yc/OZMGECp59+OnPnziWZTGb6y8068+fPZerUqfz1r3+lvj5JfX2SjRs3ZjqsDm/x4sVMnTqV6dPfpba2Dohs2LCh2XoPan3l5SuZOnUqb701jaqqKgA2bNhIjPUZjkzquKydvpyysuXNHsdpV8Lfj+G6CSdbO7Wj+PJEuORELhg03tqpHcWHH4bDbuPHw66xdmpnDWtilT59vrWTJEmSlCV2ZjXrE4F3Y4wr0o9XhBAGAaT//Sy9fSkwtMl5Q9Lbmokx/leM8YAY4wH9+m15rafOYODAgaxcWc4770xnjz32AKC+vp5nn32WESNGMHDgQHbffXfeeOMN6uuTlJQMIoRA165dSCQCMSaBwJo1q3nuuecZP348BQV55OQk6Nq1Kzk5wTditmL8+MO4+OJLOOmkE8nJ6dwLu7envfbam4svvoSzzjqTLl0KMh1Op1FaOpKLLrqY888/n6KiokyHI3UW1k5tYOjQYdZOGWLtlBnWTplh7SRJkiRlj535C/QCNk+NA/AkcGn6/qXAE022fzOkfB1Y2xnXeNhRBQVdGDx4MMuWLaOkZBBA4ydclyxZyrJlyxk9egwLF37MLrvsQiKRS15ePiEkgEB+fj4AdXV1xJhk9uzZbNhQSV5eXnp9iUTjMdosNze3cSqWEBLk5Zmj9hBCDrm5uen7wddmO0nlOq/xfur13rmny5LaibVTG+jatau1UwZYO2VGTk7C2ilDrJ0kSZKk7LFDa2SFEAqB44DvNdl8G/BgCOFy4BPg3PT2Z4CTgPlAJfA3rRZtBxRC4KSTTqSy8kjy8wv47LMVFBTkc8IJx/PBBx8yc+Z7nHzyKfzgBz+gsLAbAKeffhrduhWSSCS44IILmTt3LrvuOprx4w/lmWeeZenSJZx33nn06NEDiJxzztkkEn5qtqm99tqbESNSf4wOGjSIk08+iYqKCrp3797p18NoS6Wlwxk8uASA7t27c+6551FVVUl+fgE5OTu7ZJ92VO/efTjttNOA1BuRF154IclkkhAgP79LhqOTOiZrp7Zj7ZQZhx56CIlEqpFl7dR+xowZw6hRowBrp/Zm7SRJkiRljx366yfGuBHo02LbKuCYLRwbgR+0SnSdRJcuXenSpSsARUVFjBgxkpdemkxhYTcOO+xwQgjNFhTu1Wvz1BbFxcWMGTOaZcvKePnllxk2bBi77LJrs09rFhUVt98X8xXRrVs3uqZSTn5+PslkPTNmvMdBBx3sG1dtqKCgC927p/74z8nJpWfP7vzlL5PYf//9Gz9trNaXl5fX+HsjhEBRURFTprzBmDGj6datW4ajkzoma6cvJ5GAGAdy661b3m/t1P4KC7s33rd2aj8Nr3Owdmpv1k6SJElS9vCvn3Y0bdo0brnllmbbJk8+lOLidZ87Njc3l+rqGl566aUdHj8nJ5fVq1fz9NNPb/WYNWt6kky+seNBf8XV1dUxZcoUfvaznzX7tPDW8j579mxmz54NdL5ctaYYI2+88Qa33XYbeXl5jdu3lvfKyioef/xxwLx/Wa+99hpr1qxJX1WQsrW8Azz55JOAef+y/vrXv7L77rtnOgypQ5g2DWJsuP/52umxxx7b4nnWTq1ja7XT1vJu7dQ6tlY7bS3v1k6tZ0u1E2w999ZOrcPaSZIkSTvDRlY72nPPPfne977XbFthYQErV+a0Wwz9+tVz8cV7tNvzZdqmTZtYs2YN3/3ud5t9WnhH8t7ZctWaYoyUl5dz+eWX07Xr5k8Sm/e2V11dzbnnnsvAgQMbt5n3tvfAAw9kOgSpwxg3Dvr3h88+a147DTz1flgwh0dHPcNPj7683eLpbL8fW9ZOA8/7LSx5lkeHTOGnX//HbZ7b2XLVmlrWTgP/349g7VU82utBfrrrf23zXPP+5bSsnQbeciT0h0cHXsNPe0zb6nnm/cuxdpIkSdLOsJHVjrp27cqAAQOabbvyygwF00lUVVXRrVs3+vfv37hAOZj3tpZMJiksLKRfv34UFhY2bjfvba+wsJC+ffs2+11j3ttez549Mx2C1CHMng3JJKxYASFsrp3CQb+Ct69IHbT6Cm7nTuK0H2U22A6qae2Ue8zN8MrNqR0LJnA7NxIn37LtAfSFNK2dun/z2/Dk/0B9PuTUcPtplxMfuT/TIXZYTWun8IPdoF/qCkP6zeb2lQcRfzsrswF2UNZOkiRJ2hk2sjIoxshNNy2hrq4PXbt2Y926tdTW1pBI5LBu3VqGDSslhMCAAfCd72Q62o5l4sTlrFnThV69iti0qYo1ayro2bMHS5cuZdddR5v3NnLHHRUsXlxD3779qa2tYcWKFfTv348FCxYyevRocnJyzXsb+PWvK5k9u4JBgwaRTCZZtqyMAQP6s2DBAkaOHEl+fhfzLikr7LknNPn8w2bzT0rfSU919/aPaDLrnVpVV+B2fvELgBZNq1duMe9tJgHcxu23AzRpWtXlwqP3m/c2dQ3XXpu++4+fNd9V9Ck331xv7SRJkiRlmCszZ9jzz79HQcFySkuhpmYuy5e/RWlpYPhwKC1N3VasyHCQHdBrr81n06bZlJZCly7LmTv3eUaMCAwfHs17G5oxo4yysqmUlkK/fhuZMeNxhg/HvLexuXPXMnv2c5SWwpAhdUyf/gglJbUMG0bj7xrzLikb1NXBxo00vml/ww1Xp+7s8kz6iJi6Hfgr7rkHrrjibc4//8/8+tdruPXWj7n77sg998Ctt6bW2fK287fKyir+6Z9+Sl1dPRxxw+acE+GI69P5/Zhjj/0D//mfG7nuutnmvRVu9fVJfvrTq9iwYSOceQHkVkKoTf175vnccw/85jdrOOig3/C7323i6qs/5A9/qDPvrXD753+eyJIlS4kR2Ni/+S+limHWTpIkSVIWsJGVYTFGNm7cyLp166isrAKgqqqSefPmZziyji3GSFVVFevWrWPjxkpijNTV1TNr1iySyWSmw+vQNm3axLp169iwYQPJZJIYI7NmfZR6w0xtpra2Jp339Y25njdvLps2bcpwZJK0WdM3lwFuueXnqe3TfgQH3gm958GBd/JPRx1j7dQO4uRb4IgbYdTzcMQNXL7L0dZO7SA+cj+cdjkcfQOc9i1OrT3T2qmdxN/OgpVjUw9WjuHfvjbV2kmSJEnKAk4tmGHJZOSpp56isLCQNWtWc8ABB1BVVcXy5cszHVqHN3nyZGbOfJ/Kykr69+9HbW0tS5cuzXRYHd6MGe+ybNky6upqqKurJ5lMsnjxEmL0TbC2NH/+Av7whz8QY5I1a1YDsGTJUurqajMcmSRtWVnZcv7nfzY/jtN+RLg5cPSrv7d2akdx8i2EmwMXzHna2qkdxUfuJ9wc+PHa6Tz00IPWTu0o/nYW4ebAwEdP5Q/TrJ0kSZKkbGAjK8MSicC5555DaWkp06dPp7y8PNMhdRrHHz+Bgw46kE8++ZTXXns10+F0GgcffDCnnHIKa9eu5b777st0OJ3G2LGjufTSy6ipqeW//us/Mx2OJH1hiUTC2ilDrJ0yw9opM6ydJEmSpOxhIyvDQggkEjnk5uaRk5OT6XA6jRACOTmJdN4TBFfQbjfNX+/mvb2EkENOTi45OX56W9JXm7VTZlg7ZY61U2ZYO0mSJEnZw0ZWhu2//wEMGNADgFGjdmHw4CGsXVtBt25dMhxZxzZ27BhGjEi9+dWvX3+OPPIo6upq6dKlwDdm2lBJyWD69i0CoFu3Qk466URijOTl5RGCS/a1laKiIo455mgAcnNzOfXUU8jNzSWRSJCT438Dkr5ajjzySPr06Q1YO7Wn/fbbl7y8fMDaqT2NHDmCgQMHAtZO7c3aSZIkScoe/vWTQSEEBg0aRGFhdwCKi4vp0qULb7zxBrvvvodvCrShPn360bt36k2wwsJC+vfvz6RJL7Hbbl8z722oZ89elJSUAJCfn09p6XBeeuklRowYQX5+foaj67i6dOnK8OGl6U/T5zBy5C5MnTqVoqIievTonunwJOlzEgkoKRm4xX3Dhg2zdsqAAQMGWjtlQFFRsbVThlg7SZIkSdnDj5O1ozlz5nDvvfc22zZz5tdYurSy8XGMSUaNGsWqVat44403ACgv78a9937UrrF2FDU1NXz00Ufcf//9zd5kaZl3iJSUDCKZTDJlyhTAvH8ZMUY+/PBDHnjgAQoKChq3fz7v0LNnTxKJHPPeSmbOnMljjz1GcXFxk22fzzsEhgwZzNSp0wDz/mW99dZb7L777pkOQ+oQpk2DGFP3t1Q7NdRHDaydWtfWaqeWebd2al1bq50+n3drp9a2pdoJtpR7a6fWZO0kSZKknWEjqx317NmTESNGNNs2alQhq1Y1/6MpBKira3pMzefO046prq6mV69elJaWkkhsvgBxa3mvr6fJMeb9i4oxUlRURGlpKV26bJ7qaUt5B0gmU7fUMeb9yyguLmbo0KH069evcZt5b3uzZ8/OdAhShzFuHPTvD5991rx2OvRH02DBHO4a9Qzf3vuMZudYO7WelrXToVe9CGXPclfJX/j2mEubHWvt1Hpa1k6H/uI/YMNV3NX9Lr7d79bPHe//4a2nZe106B//FkrgruT/49vJJ5oda95bj7WTJEmSdoaNrHY0aNAgDjnkkGbbWjzchtGtHk9nUFVVxXPPPce4ceOaLQhv3ttWMpnkqaee4uCDD6awsLBxu3lve5MnT+aAAw5g8ODBjdvMe9ubO3dupkOQOoTZs1NvEq9YkWqSNNRO4aBfwdtXpA5afQW/407itB9tZzR/p30RTWun3KN+Bq/dkNqxYAK/4xbiqzduZwTz/kU0rZ26X/R9ePo/oT6f/5+9O4+Pqjwb//+5Z8u+h6wkBAKEXZYAsiiCIIgLPG1FqFurpU+1am37/OxTFBdscWlrF23rt9S2qH3c9w1QqOwREgKySFgTEiALCVknyWz374+ZDJMVkCQTwvV+veaVmbPNda5zMnPNuc+5D0Ybf7/uv9HvvXyWJUjevynf2kn96DJI/Mo9IvEr/l48D/3Crg7mlrx/U1I7CSGEEEKI8yENWX6kteb3v6+mqioIs9lCY2MDTqf7FL+Ghnqio2MAiI+HxYv9GWnv88c/1nLqlImAgEDsdjs2WwMWi4XKyipiY/uglJK8d4EVKzSHDtUQHByE0WiWHHeTv/7VTkFBAyEhoWitqa2tISQkhFOnyomJicZkkm0hhOgZRo4En/Mfzjg01/PE09Xd9geQ2zJ1lSDgaZ55BqBFo9XGRyXvXcYAPMXTTwP4NFo5TPD+y5L3LrWEhx7yPL2vRVfM4UUsW+aS2kkIIYQQQgg/M5x9EtGV3nlnC2bzcdLSoK5uH4WFG4iMrMRgOEa/fpq0NPdZyaJzffbZbmpqdpOWBgEBJ9m58wPi4uqx2w9K3rvQyZOabdteJzKyUnLcjfbtKyc3913S0qBvXwebNr1CfHw9jY15JCXZZVsIIXoMhwPq6vAetH/kkV+6nwz8xDOFdj/G/4GXX4af/nQHt966iqefPsHPf57LSy9pXn4ZnnjCfZ8teZz/w2qt58EHf4HD4YQrHj+TczRc8Tgvvwy//vUx5sz5N88/X8ndd29m5UqX5P0CH06ni1/84n+pra2DebeByQrK7v4771b+8IcyyXEXPX796+UUFR1Ha8AW3PxDqaqv1E5CCCGEEEL0AHJFlp/Z7XacTgdOpwO73Y7D4SAgwOK9Mkt0DYfDgd0OTqfD89yG2Wz2d1iXhMZGu/feAqJ7aK2x2Wy4XE5cLic2mw2lDJhMJrSWjSGE6Dm0PvNcKVi27EngYfS2B9zdCx6eC+mf8Nh110nt1A30hkdRVz4OJyZCUhb3jJwttVM30O+9jJp/G9T2hdAiJpVOltqpm+gXdp3pXvDkSP41OcfTe4PUTkIIIYQQQviTNGT5mculefPNtwgJCaGi4jTjxo2lsrKSffv2MXbsWH+H16utWbOa7OztWK1WYmNjqa9vIDc3l4kTL/d3aEJ0ury8PP7yl7/gcrkoLz8FaHJzc8nIGERISKi/wxNCiFZOnCjmxRfPvNbbHkA9rpix4R9SO3UjveFR1OOKRXkfS+3UjfR7L6MeV6zs7+SFF17wdziXFP3CLtTjisQPZ/OXnVI7CSGEEEII0RNIQ5afGQyKuXOvIzU1hV27dlFbW+vvkC4ZV145jTFjRlNUVER2dra/wxGiSw0YMICFCxditzt46aWV/g5HCCG+MYPBILWTn0jtJC4lUjsJIYQQQgjRc8g9snqA0NBQIiOjCA5u6+7moqsEBwcRGRlFaKicUdkd6uvrKSsrxel0YDJJG3p3M5stREREEh4ejtFo9Hc4QghxQaR28g+pnbrfiRPHpXbyE6mdhBBCCCGE6DnkF5GfDRo0kMjISAASExMIDw9Day0/VrtYSkoKSUnudtyIiEhGjhwFuCTvXcjhcHDkyFEmTJhAeHi4v8O5pISEhDB69CgATCYD48dPwGQyYTAYUEoOzAghLi4jR46U2skP0tPTCQ4OAqR26k579+6T2slPpHYSQgghhBCi55Bfnn6klGLIkGFER7tf9+2bQlVVFe+++w7Dh49AKeXfAHuxfv3SSElxP4+KimLEiOF89NFHpKb2w2CQCxW7QlhYGJMmTSItzd+RXHrCwsJJSxsPgNFoZvLkyWzb9iUGg0HOqhdCXHR874MltVP3ycjI8D6X2qn7zJ49298hXLLGjZPaSQghhBBCiJ5CGrK6UVlZGbm5uc2GnTjRB7B7XzudDu+Zxvn5Rz3TmMnNLevOUHuNxsZGSktL2blzZ7ODLC3z7nJp0tL6Ex4eTkFBvmcayfs3pbWmpKSEr776isDAQO/wlnmXHHe+kydPsmfPHkpLS73DWuYdICgomKlTp3LixHHPNLItLkRhYSHDhw/3dxhC9BoGA2idwP33t66dmuqjJlI7da72aqeWeZfaqXO1Vzu1zLvkuPO1VTtB69xL7dS5pHYSQgghhBDnQxqyulFpaSk5OTnNhtXWDiY7O6iNqU97n4WH15OTc6CLo+ud7HY7xcXF7Nixo9lZ2u3nvdL7TPL+zWmtKS4uJjc3F4vF4h3eMu+S4853/Phxdu/e7e12Czra3wGsgGyLC1VQUODvEIToNbZtA63dz31rp8X/rx6O5LF0wEfMS768jTmlduoMLWunxf8shZJPWRr/KvP6zGpjDqmdOkPL2mnxe1uh4X9ZGvgr5pl+5J1Octz5WtZOi7esgH6w9MhC5lU838YcUjt1BqmdhBBCCCHE+ZCGrG40fPhwfvCDHzQb1uJlB67s9HguBfX19eTn53PnnXc2u0mz5L1ruVwuDh8+zB133EFISIh3eNt5lxx3ptLSUhYtWkRycrJ3mOzvXU/uESNE55k0CeLioLT0TO2kxj8H2fe6J6gYxPs8j95+zaK7ggAAIABJREFU31mWJJ9p34Rv7WSa9jRs+aV7xOHZvD/lSfSmJWdZguT9m/CtnUIX3g+rnwOnBYw23p9zH/rDF32mlhx3Jt/aSd05EVK3uUekbuN97kX/48sO5pZt8U1J7SSEEEIIIc6HVI9+5HQ6WbHCxalTZs9rB6AxGt2v4+Nh8WI/BtiLrVihOXHCidPpQCkjJpMJpZTkvIv97W8OioocABiNJgwGo/dKOcl911mxAoqLNQ6HDa21N/d2eyNFRceJiIjAZrOTkJDg3R4Ohx2n00lAgLt7I9k+QojusH8/uFxQUgLNbnd1uOk+QZ6B2fcht8PqKkHA0zzzDECLRqvNSyTvXcYAPMXTTwP4NFo5TPDRi5L3LrWEhx7yPL01svmosFM88kiD1E5CCCGEEEL4mTRk+VF+fj6vvHKAxYtnYTAYyc7OxeVyMXHiRM94/8bXmx05UsfOne8B0NDQwPXX30B8fLzkvItlZRWwe/dHxMRE43S6uO66ucTExKKUktx3oRMnHBw/voWDB/MICQnFbDZx7bXXkZu7g4qKk/TtexmffbaGH/3oRxiN7q+F/PwiSkqOM3nyFNk+QohuM3Ik+FzIe0b6asgeBHj6HMx8npfuv5fs7Gxv7ZSfDw8/3I3B9lL19fU89thjLF++3H1F1uZfnhk5+UnmhKe2qp0k7xfO5XKxZMkSli5d6r4ia9Vz4DSD0Q6z72O246o2ayfJ/YVbvnw5d9xxh+eKrMrmI2ti2XH4XamdhBBCCCGE8DNpyPKjxMREysu3UFl5msjIaL76ahdz5szxd1i9ntaarKwsBg9OZfLkydTVWTGZjGefUVwwm62RtLR+XH/99Rw4cJC3336bu+66C5PJ7O/QerXCwkLy8vZx6623EhgYRF1dHU6nk9zcXPr27UtQUCA2m50dO3KxWq1cfvlEYmJi/R22EOIS5HC4H01XnzzyyC95+GHQ2+9zdy94ZDYMWM0fbl2Iy+WS2qmL6U1LUFOXQ/FYiN/BD0dMldqpG+gPX0TdcBfUx0FgKd8JukFqp26i//Glu3vBftvg2ARemLhWaichhBBCCCF6AIO/A7iUBQUFkZ4+kP3786isrMTpdBEXF+/vsHo9u91OSUkJw4YNw2g0ER4eTnBwW6d/i66hMBpNDBgwAKu1nvr6Bn8H1OsdOXKEzMxxuFwutm/fxv79+9FaYzKZsFgCMBiMlJaW4nI5OX68iF27vqK0tISNGzf5O3QhxCVG6zMPgGXLnjwzbvt9cH8Gtw3NkNqpG+lNS+C2a8m0BUvt1I30hy/CFU/x08E/Rmqn7tV0T6wHIp6X2kkIIYQQQogeQhqy/EgpRXp6Ovv3f83+/fsZOnSo3PS2m7hcLhwOp7/DuMRptNZyz4duYDQacDicGI0moqKi2LRpE7W1NURHx9CvXz+Cg4NJSkokMzOTQYMGU1ZW6u+QhRCCEyeK2xw+YsRwqZ38wOFwSu3kd1I7dSepnYQQQgghhOg5pCHLz6KiomhstLF9+zaGDBnivVmw6Dpms5nU1FRycrJpaKjn5MmTVFVV+TusS4bL5aK+vp6dO3eSkJBAUFCwv0Pq9dLTB7Jp0yZqaqpJS0sjMDDAe7XDGfLZI4S4OMTFxUnt5AeDBw+W2slPpHbyD6mdhBBCCCGE6DnkFFY/MxpNjB8/gUOHDhEdHeXvcC4JSinGjRvHwYOf8fbbb2MymZk1a5a/w7okBAeHUlBQyrvvvktMTDQ33ngDRqPcY6OrJSYmcdVV01i1ahUmk5mYmBgiIsJJSEggNDQEk8lEamoqoAgPD8flcp9xbzDIARohRM8jtZN/XHXVVaxd+7nUTt0sPDyM0lKpnfxBaichhBBCCCF6DmnI8jOlFJmZmYwbN07OKO5GISGhzJs3H5fLhVIKg0EuTuwOKSkpTJnyAwAMBoPs893EaDQydmwmY8aMQ2vtzf3UqVO92+CGG25AKcXgwYOxWq2sWbOG5ORkP0cuhBCtSe3kH2FhYVI7+UF6+kD69x8ASO3U3aR2EkIIIYQQoueQhqxu1NjYyOnTp5sNs1oDsFpdbU5vtRo4fbqxO0Lrterr62loaKCysrLZAZf28i457xwul8ubd5vN5h1eXx9AQ4Ps712pKe/BwWe6Heroc6Yt9fX1JCUlkZ4+AKu1zrMM2T4dsVqt/g5BiF7FYACtE3j44da1U11dbZvzyOdU52ivdpK8d632aqem7+G2SO47R1u1E3Sc+5akdjp/UjsJIYQQQojzIQ1Z3Sg3N5dnn3222bBdu8ayZUtom9OHhNTy7LM7uiO0XsvhcJCdnc3vf//7Zmewtpd3yXnn0Fqzfft2nnvuOcxms3e47O9db/PmzVRXVxMWFuYd1lHeO7J7907vc9k+Hdu7dy/jx4/3dxhC9ArbtuG9F02r2skEr766tc355HOqc7RZO0neu1ybtVMHeQfJfWdpq3Y6W+7bI7XTuZPaSQghhBBCnA9pyOpGl19+OQ899NB5zjW/S2K5VNTX1/P444/z+OOPn0cXOJLzC6W1ZsmSJSxdurTV2a0dk9xfqCeffJLbb7+9i7q2ke3TnpUrV/o7BCF6jUmTIC4OSkub106G8X+Go3ms778G1/YftzO3fE5dqJa1k2Hys1D2Kev7fIVry8/amUvyfqFa1k6GufeB/X9ZH/Q+rk+e62BOyf2Falk7Ge64GtJhfeqTuFauvcCly/Zpj9ROQgghhBDifEhDVjdr2a+99pxyrJTyPgd39yJ2u53GxkYiIiK6NcbexDffvs99c91ynLhwvvltL+/l5eVERUV5b1hus9mora0lKirKO09VVRUWi4WgoKBuirx3UEp1uL83cTqdGI1G2f+FED3G/v3gckFJCTR9NCmlUJnPQ46n8apiEIbxf0Zn3yu1Uxfw/U4wTH4WsjyNV4dnY5j8rLcxS747OpfvvmyYex98/gw4LWC0YZh7H65PnpPaqQs11U7q9hmQmuUemJqF4Y6rmzVmSe0khBBCCCGEf0hDlh9prfn+9zcRFTWMmJgYioqKqK2tITw8nNLSUsLDIygsPMa0adNbzRsfD4sX+yHoXuL++78iO/sYZrOFQYMGkZbWH6WU5LWLrVih+eCDLxk2bBifffYFc+bMJiTE3Y1LSclpsrOzmTt3rvfg5caNu0hMTGTgwEHNliPb6fw880wFW7ceYdy4TJxOB1lZWYwbN47t27eTmTme4OBgyakQokcYORJCQtoYcWS254nnCyLnXs93he/BZKPnEdiFEV4KgoCneeYZgJ83H5X1c875AndxngzAUzz9NMDzZwY7TLDqeU/eY1vMYwGiWwyTRtzztwRvpxlTZ0H/De7nBhsozeOPS+0khBDiwiml8oEfaK0/P8/50oCjgFlr7TjHeZYAA7TWP+jMWDzzfs8z79RvMO+/gCKt9cPnMU8tMEprfaQzYznLe34BvKK1/nsb49I4z+3RE13IPiCEv0hDlp99/fVprruuirS0GMrKiqmqKmH06BnU1JgoKyujrKwEh+MgwcEhJCYmes/+y8/3b9wXu4MHqxk1KoIBA9J58803mDr1Xsxms+S1ixUXQ0VFLvHx/TGbTxAScgqr9Rjp6ekYjY0EBJxAqXyUMpCSkkJYWDlhYRasVhvJycmEh0eglJLtdJ4KC21UVX1FWlomNpuLjz7KJjV1LOHhA4mLM2M2y2eKEKJncDjcj6YTGh555Jc8/DAwYDXkDAQ8V62M+zMvP3Av27dvp7S0hOnTZ1BTU01ZWRl79+5l3LhxbdZOD5/zT+ZLV319PY899hjLly/HNPUPZ67IApj4O576r0W8+eYb/PjHZ2onyeuFc7lc3q4FQ7/zC88VWWYw2mHm/8dvZy7l9dff4MYbb8BqtZKenk5paSmrV69m5syZ3trpgw/eJzExkbCwsFa1k2ynti1fvpw77riD5ORk1O2fua+EM9SDywJakZIitZMQQoiLi9Z6ub9j6Cxa6/O/4XcLSikNDNJaH+qEkIQQfiLnVPYAu3fvZuvWrRw4cACtNcXFxaxb9x8A9uzZTUHBMd55522OHy/yc6S9S35+Afv27aNPnz7ncf8s0Vnq661s3ryZnTt3sXbtOrSGw4cPc+DAQVat+pQDB/JwuTSbN2/h6NF8XnvtNRyOi/ZkF787daqMrKwstm3bhtVqBTQff/wx1dVV/g5NCCG8tD7zAFi27En38Ox7YdyfIfogjPsz3+mfIrVTN9Bbfw6XPwvpq2Hi77gmIl5qp26gP30eZj4IMx6BmQ8yqWo4ILVTd9AvrYNjl7tfHJvIPWG/ltpJCCHERUUp1SsuWugt6+Evkj/RG8kvUD/TWlNXV0t1dZXnBxJo7fL+6Bw+fAQzZsxg1KjLOHDgoD9D7XWsVisOh4PKykpqaqr9Hc4lJzAwkDlzruXqq2dQWHgMrTVpaf2ZOXMmkydPZu/efSilmDbtCmbPvoaGhkbq6+v9HfZFy263U11dRXV1NU6n0zvMe3WDEEL0MCdOFDd7rbPvhfszuDoyRGqnbqS3/hxuu5ZFA4ZJ7dSN9KfPwxVPsXLRn7zDpHbqHvqldQBkbJshtZMQQojONlop9ZVSqkop9bpSKhBAKbVHKXVD00RKKbNS6pRSaozPvHcqpU4opU4qpf7HZ9rHlFJvKaVeUUpVA9/zDHvFZ5rblFIFSqlypdRDdAKl1G+VUqeVUkeVUtd6ht2klMppMd3PlFLv+wyKVUp9ppSqUUqtV0r185lWK6V+rJQ6CBz0GTbQ8zxGKfWBUqpaKbUNSD+HOD19BrNLKVWrlLpZKRWllPpIKVXmWYePlFJ9W8yarpTa5nmv95VSLftzblp+hFLqRc92Oa6U+pVSyniWmAZ61r3Ks51f9xk3xJOfCqVUnlJqgc+465RSuZ6YCpVSj/mMS/Pk6i6l1DFgnWf4YqXU155871NKjfUJpc39UYieShqy/EwpxeWXT2L27DmMHj261Y2DbTY7LpeT2toaTCZpTO9Mo0dfxjXXzCIwMIjS0jJ/h9Praa3R2ul9rZQBk8kIKO8Nzh0OB1o7qampxWQyoRSYTGbkftoXLjExiWuumc3MmTMJCwvzdzhCCPGNKWWQ2slPpHbqflI7+Y/UTkIIIbrAAmAO0B8YBXzPM/wl4Faf6eYCJ7XWuT7DpgODgGuAXyilZvqMmwe8BUQC//Z9Q6XUMOCvwG1AEhADtGy0OV8TgTzcN/B8BnhRuYvyD4D+SqmhPtPe5lm/JrcAT3jm3dkyXmC+Z/nD2njfPwMNQCJwp+fRIa31lZ6nl2mtQ7XWr+M+Hv5PoB+QCtTT7CalANzuWX4i4AD+RNv+5Rk/EBiDe/u0eW8yH08Aa4Ao3NviOQClVAjwGfB/QBywEPiLZxsC1HniigSuA+5WSs1vsexpwFBgtlLqJuAxzzzhwI1Auc+07e2PQvRI0pDlZ8HBwd6DLBaLhcDAIO84s9nMyZMneOuttzh6NJ9Ro0b6K8xeJyAgkNzcXN54400CAwPo2zfZ3yH1ehUVFaxbt46goCDCwsIJDw/DYDBgMhkIDQ3FZDJRVVXFW2+9TU5ODuPHjycoKAiz2QJAeHh4q4OV4twYjUZCQ0MAd+N5WFiY5FIIcdEKDQ2R2skPgoKCpHbyg7fffldqJz+R2kkIIUQX+JPW+oTWugL4EBjtGf4KMFcpFe55fRvwcot5H9da12mtd+NuhFnkM26r1vo9rbVLa93ycuzvAB9prTdorRuBpYDrAtejQGu9QrvPuFmJu7En3rP81/E0yimlhgNpwEc+837sE8tDwCSlVIrP+Ce11hUt18NzldO3gUc8edjjee/zprUu11q/rbW2aq1rgF/jbgDy9bLWeo/Wug53zha0vNJKKRWPu9HxAU9MpcDvcTdAdcSOuxEtSWvdoLXe5Bl+PZCvtf6n1trhach8G7jJE/cXWuvdnu38FfBqG3E/5omlHneD2jNa6+3a7ZDWusBn2vb2RyF6JDlN1c+uvPIKkpPdn4PDhw/DZrORnZ1DbGwsAwem88ADD+B0OjEaTVgsFj9H23uMHn0ZSUnuE0QCAwMxGuVfoatFR0dzxRVX0r+/AYvFwsKFC7FYAggODuGmm27CZDLx85//DKfThdFowGIJICYmBpPJgMFgYtEi9/Ti/EVHxzBqlPskHbPZzC233EJNTS2gCQwM9m9wQghxnq6//npvQ5bUTt1nypQpTJgwHpDaqTtdf/113n1ZaqfuNX++1E5CCCE6nW/f2VbcV0ihtT6hlNoMfFsp9S5wLfCTFvMW+jwvAEa2M66lJN/xWus6pVR5WxMqpVKBfT7Thp5tPbTWVs/JHk3TrgReVUo9jLtB7g1Po1WrWLXWtUqpihYxtrcufXAfx26Zh/OmlArG3eA0B/dVUQBhSimjPnM5fMv3MeO+isxXP8/wkz4nvBg6WIcmD+K+KmubUuo08Dut9T88y5uolKr0mdaEp1FTKTUReAoYAViAAODNFsv2fe8U4HAHcbS5PwrRU8kv0G6ktfb2r97EYHBvAqfTiVIGbDYbVmsdmZmZgPuMS5PJDIDLdeaECafT/RAdczqdaK2b5Q7AYDA2O4O7abtIXjuHy+Xy5t13nzebLZhM7vFms8XbLU7TPm4ymWnqBcrlcnkPVPpO73Q6ZTt14EyOmifIZDJ7/w/MZjMFBflMnDiRwMAAyWknaPkZI4S4MAYDaJ3AsmWta6em7wypnbpGe7WT0WjEaJTaqau0VzsFBAR6x0vt1DWkdvIPqZ2EEKKVlbivoDHhvsLqeIvxKcB+z/NU4ITPuI5u4HgSd1dzgLcRJ6atCbXWxzjTIPWNaK2zlFI24Argu56HL+/VV0qpUCCac1uXMtxd+LXMwzfxcyADmKi1LlZKjQZyAd/Lr32vEkvFfRXVqRbDC4FGIFZr7TjXN9daFwOLAZRSU4HPPffyKgTWa61ntTPr/+HuAvFarXWDUuoPtG5c881fIedwHzEhLhbSkNWNtmzZwpIlS1oMu4qIiMpW065d+3mHy6qqisRq/aIzw+uVHA4Hmzdv5qGHHmrWHUh7eZe8dg6tNRs2bMBut2M2m73D28v7+ZLt1L6srCyOHz/e7F4OHeX90KFDgOT0Qn399deMHCldmAnRGbZtA8+x+ta1UzC8+eYbbc4ntVPnaLN26iDvktfO0Wbt1EHez5dsp/a1VTt1lHupnTqH1E5CCNHKe8BfgHjc951qaalSajHu+xl9n+b31OrIW8CXngaTbcAyuv5WMy/hbnCx+3Sb12SuTyxPAFla67NdwYTW2qmUegd4TCl1J+4uC+8A8s8hnhJgAHDI8zoM932xKpVS0cCjbcxzq1LqJc/ylwFveWLwjemkUmoN8Dul1FKgFvf26au1Xt9eMJ57V23VWhcBp3E3Prlwd8H4lFLqNuA1z+SjgVqt9deeuCs8jVgTcDcSrulgvf8OPKuU2gTswN2oZW/RvaAQFw1pyOpGl19+OQ8++GCzYf/8p4GSkvNfVnw8fP/7V3VOYL1YQ0MDv/rVr3j00UcxGM58T7eXd8lr59Ba88gjj7BkyRKCgs6cvf1N9/eWZDu17ze/+Q233HILSUlnrgg/l7xLTi/MK6+84u8QhOg1Jk2CuDgoLW1eOwVP+RcU5PFxv7U8csNZ7+vcinzOnZuWtVPwFS/C0Tw+7r+GR65b3Gp6yWvnaFk7BV//KBR8ysf91vHI1CcuePmyndrXsnYK/t5CKP9fPo55jUeGtN+QKDm9MFI7CSFEc1rreqXU27jvffVOG5Osx90QYwB+q7XuqAHDd7l7lVI/xn01TwjwLFDUOVG362XcjVRtFTH/h7vhaBLuxpVzbZADuBf3/cGKcV+V9U9g+jnM9xiwUikVBPwQ+IMnjlO4rwb7HTC/jXX4FzAEd+7vbmfZt+Pu7m8f7oamI8DTZ4lnPPAHpVQE7ka2n2itjwAopa7BvY2exb2tdwE/88x3D+5Gs+c9Mb0BRLb3JlrrN5VSMZ51TcbdKHcb37BLRiH8TRqyupHRaGx2UB/gnntaT9fUZYhvK7/D4cBgMHju+WBs1ijjy+FwoJTCaDxz/8G2lncpMZlMnns5nMlJR3lv6l7EZDJ5c9Y0rqnbl6ZuW7TWOByOZtOKM13bBAQENNvn28q7r6YuXXy3VZNLfT8+V037e1t5b9pfO/oMEd+M75WHQohvbv9+cLmgpASUOlM7qbF/hdwfuSeqGMQyXkDvOPNbUmqnztX0XWKa+FfI+bF7YMUglvFndPa93umkduo8vrVT8PWPwjrP8Y/Ds1nGL9Br2zoxW2qnzuBbO6mb58E7r4LTAkYby761ANsrb0nt1AWkdhJCXGq01mktXj/WxmTHgHe11rU+0+Vzpsu7v7Wx3FbLaTlMa70Sd9eFTX59TkG3QWv9L9wNPL7DWhYbZUAd8EqL6b53lmW3Klp8h2mty4Drzydez3wvAC+0GHxVi9f/z2f6luN8l5WPTxeEWusq3I1c7TV0tbWMB3HfJ6utcXnAde2Mewv3FXZnjctneFvrfq77oxA9ijRk+ZHWmv/5n68xm1MIDQ2jvLyM+voGLJYAKipOkZEx1PvDc+vW7fTrl8LBg4cYNmwYffrEtbnM7Oxc+vSJpV+//oD7x+2uXbvIyBhMSIi7m9v4eFjc+oTaS8pDDx2lri6E2Ng4amtrKCkppk+fOI4cOUy/fmns2LGDGTOupul3//Hjx2loqMflAqu1lssuGwOAy6VZt+4Lxo8fT0RE85MgJM+tLV9ezObNRzEYICYmlv790zAaz/yI3b//AA6HgxEjmncz4nK52L17F/37DyA8PAKQ/J6PFSvcB4W1hg0bNjF8+HBiY9v+DOmI5FwI0dVGjoSQkDZGHG3qJt7zxZx7N82Pzbd1oL6pzD3bwee2yuFL+cB/EPA0zzwD7pNefeTc207eFa3z3DSuZQOLwn1PbNGcAXiKp5+GVr0JrXuG9tuiWjdgnXEp78fnYwkPPdT0/P0zg50ayoYzd+43q52kbhJCCHE+PF3c3YX7ipmL3d3Adq31QX8HIoToPaQhy882bTrEddcFkpYWRllZPlVVJUybNo2amigSEqCxsR6rtR7IJzo6Eq2PEh2dTFiYgYiICIxGEw0NDVittURGRrNzZxFhYUbCwsIJCwvDbDZjscQSF2ciIMD9nvn5/lzjniEnp4hBg8ykpcWRn3+K7OxNTJ26iKioWIzGBhyOw8TGTgAgNDSMqKhQGhstHD16BLu9gsjINAICAgkICMDpPExs7FACAx1ERkZiNLr/rSTPre3bV4HDcZDJk6eQnZ2N03mYWbOuweFwUFNTTVBQCQ6Hg759h+B0uqitrSU0NASLJQCLJZaYGAtNFxpJfs9dcbEmPt5KY6MNp/MoffoMIDnZzunTlYSHh3uuRFAYDCZsNhvgPktWKYXNZsNisaCUkpwLIbqcw+F+NB20f+SRX/Lww0D/zyA3He+9i8e8wEHrx1TX1GC324iMjMTpcGKxWHC5XDhdLk5XVBAaGkp1dTURkRGYTCb3VUAozzTuK4jKT5UTEBhIYGAARqMJg1I0NDZisZgxKHfjjCotJr0i2y856W719fU89thjLF++vPkVWQDj/szLD9xLfv5RvvjiCxYtWkRpaSlGo4kPP/yQ7353EeCunaqrq2hstHH06BHKyyuYPHmSt3ZaseJvXH/99QQGBraqnR5+2A8r3QO4XC6WLFnC0qVLCb3x8TNXZAHMeJDHrvwR2dnZREZGNKud9uzZg8PhYNq0aa1qp+PHi4iJiSUoKOiSzu3ZLF++nDvuuIPk5GSfK7LMYLRDn704ywZ+o9qpoEAaEoUQQpwbz72v/gC8rLXe4O94LoRSKh/32TQtu+rryve8Avi0rXFa69DuisOXUuoF2u428RWt9Y+6Ox4hegNpyOoByspKsVjMVFSUA1BRcZrc3B1MmzaN119/g7CwUL7+ej9jxozG6XTx2WefYzab6NMnnhkzpvP+++8TERHhvVnuhg3riYqKwmw2c/PNC9i6NYtp064kPj7Bn6vZ45SXV1BUVEhJSSngPnCzfv16pk+fQVHRMT788CNKS0tYtGgRlZWVFBQcIyIinNzcXE6frqC2tpbbb78Dm83OqlWf4nC4SE8fwNVXz5QuXDoQHh5Beno6CQnxvPDCC0ycOJH33/8Ai8XC0aNHmThxAlu3ZrFjRw6RkVGA5pZbbiE7O5tx4zJJSUnx9ypcdCoqKliz5k1CQ8M4fPgwM2ZMZ9WqVWitSUhIJDg4iPz8AgYOHMjRo0eoq6tl0qQphIWF8f7773HzzQul+xchRLfw9IQGuBuzli17EngYveNud/eCBVdDv7XklLxKY0AADocdALvdQW1tDZERkZSWlWE0GrBarYSGhqLRnK44jTIozGYLUVGRnDp1CpPJRIjn8q+qykrqzO6u7uLi4qiuriYyMgKL2eKHLPQcOvteVObzcOQaGLCGRYMHSO3UDfTaZ1BXPwj5V0PaWr4TPVVqp26iX3/f3ZhVNhz67GVO9QL2Hd73jWonufJQCCHEudJarwBW+DuOztCyy7pues+NgF8arNrjaaySBishOpF09O1nLpdm69atrF69itzcXLTW2O02qqtr2Lt3HxkZg7n55gWkpfUDwGAwMGXKFBYuXMTRo0eoqamlsrKKwYMzSEpKBmDcuHEsWvRdyspOUVdXT1VVFQ6H05+r2SPt2rWL1atXsXXrFpxOF06ni6qqKsDd7d23v/1tRowYwaFDh2hstFFb6+6ieNCgQSxcuBCTycSpU6cwGg1cddV0FixYwP79+3G5HP5crYuGxRKA0WikoOAYgYEBLFiwgNGjLwPAaq1jyJCh3HLLd6mtraWqqpqqqmrsdrufo744HThwgLFjx7FgwQKSkhJxuTQlJcXExcUxfPgwBg/O4Pjx43z88ceMHz+etLQ0duzI4cgZS9EBAAAgAElEQVSRw4SFhXvvayKEEN3pxIniZq/1jrvh/gw2HnmR6qpqKioqqK1xfzdr7cLhcFJnrSM4KIi4uDgCAwMBUCjCIyKIi4ujoaEep8OJw+EgKCgYi8V9uXpoWBhxcfHY7Q6cThcOh8N7f6FLnc6+lyd+NphFgwdI7dSN9NpneOL7s/npZQu9w6R26h769feZG3QD9yc8LLWTEEIIIYQQPYQ0ZPmZwaC48cZ53HnnD1qdjdrQUI/BYMRgMBEY6O5PTSkICwvDYDCitSY6Oor/+q/5bN26hY0bNwLu8UajQimF1i6/rNfFYMaM6dx55w+YP38+RmPzfwX3wS0LRqMJh6P5wZWm/BsMRlwu9w3kQ0NDMRgMuFxy0OtcaK2prKxsdmNyg8FAcHCw97W72xYD7ivSZT++EDZbAwaDAaPR6Ok6y8hNN91MRcVpXnvtdVwuFwEBFhoaGjAajQwcOIj8/Hx27fqKcePGylnyQoieRSliYmNJTEgkMiqq2SiXywVKoVAYDGe+201GIwoFGkxmE7GxsVRXV3kbYUxGo889iOS7vD1SO/mP1E7dS2onIYQQQgghehY5VczP3D/q3Y1O7r9nDgoMGTKUt956k4aGBvbv309m5jiMRpP3h5HRaKSyspJ9+/ZhMpnQWmMwGL3LcP/QlR9RbTEa3XlSSnn6uD/zr6AUmEzugwQGQ/MDYfgcGGvKb9Nf93I6uuG2AMWxYwV89tlnFBYWMnPmLFJS+vKf/6zj888/Z8eOHCZMmIjBoDEY3Puue1vIfnwh0tMHsmXLe5w6VcaRI/m4XC5yc3egtQutNXv2fEVUVDQZGRl88cUX3HDDjURGRlJeXi5dkgohehylznwruEuiM98RwcHBlJWV4XK5sFqthIWFtZrB4XBgtVo99ZT2jFdtLk+cYTQapHbyA4NBaid/kNpJiN4nNjZWp6Wl+TsMIYQQQnQgJyfnlNa6T1vjpCHLz6ZOnUJiorvrmyFDhpKenk5BwTHCwkJJTExk4cKF2Gx2Ro8eTXh4GLGxsYSGhmIymVmw4GaioqLIyMggIyODhIRE6upqsVgsGAwmbrrpJu9NzwMDA/y8pj3LyJEj6d/f/QM/ISGBuXPnYLVaCQkJISYmlnnz5gEwduxYXC7Nvn37CA8PY8SI4d5uGq+7bi6hoaHMnz+fiIhIDAa46aabMBjk36o9aWlpDBlyA0q5u8hsOov4tttuo7a2jjFjRhMQEIDW7gNmBoOBb33r2wQHh+B0OgkKCvLzGlycEhOTGDDg22jtYvToMURGRhAUFEhDQwPTpk2joaGRYcNGYLGYKC8/jVKKefPmYbM1Stc4QogeJzo62tv4ERwcTFCgpqGxEZPRiMUSQFxcHC6XdtdLRiPmGLPnBBb3/a9MJhNBQcHeK4hcTifK4L6Kq0+fOAyeRq3mjTHi8ssneRurpHbqPoMHDyYyMlJqp24mtZMQvU9aWhrZ2dn+DkMIIYQQHVBKFbQ3TqpsP1JKERERSYCnjSkkJITTp23s3v0VU6dOxWAwtDqjr6mLQYD4+HgAUlJSvcPcN3h269OnD9u2fUl8fBwRERFduCYXn9DQMDz3dycgIBCXS7Nu3ReMGTOWgIAAAgLcDb9hYeGUlJRw6NBBZs2aRUjImXtHxsTEeudvEhcX130rcREKDAwiLa1/q+ExMbHefLbUp08fcnJyiIgIIyYmpqtD7JWMRiNJSUnNhiUkJHqf++7XTftwWFh49wQnhBDnyWwye58bDUYcLgd1dbVEhEegAIvZ0mx63wYpi9k9b2DAmRN8DD4HnS1mM9U11VjMZjkY3YJvLSm1U/cJDg6R2skPpHYSQgghhBCiZ5Ff6N1EKcW+ffv47W9/22z4xo0T2Lu3xmeIJjIykr1797J3774Lfl+tXZjNZlavXuMdVlERxm9/u+2Cl30xsNvt7N69m2effbZZX/Vt5T0oKJCiokKKiopaLEUTFRVFTk4O59NNy6WU55a01nz11Vf86U9/wmw+c8Cxdd7PeYkEBATy2WefeYdcyvntyPbt22lsbHR3p+XxzfPenOS8fXv27GHUqFH+DkOIXqW92qm8orzVtCaTiTprHXXWus55b4OioqLC+zqkvr5VHL1VW7VT298jUjt1prZqpwv7/m5eO13KuT2brqqdJOcdk9pJCCGEEEKcD6W1/2+wnJmZqXv7Jd4Oh4OTJ0/idDqbDX/ttRDKyrr33gB9+jhZuLBzDvRcrLoj75Ln1joz75Lfc9dZeZect08pRUJCAgEBvbsb18zMTLKzs+XGKz3ApVo79V/Zn7xnx3R7LLaoWEK/+Fu3v29P0V31qnzPNCd1k/90Ru4l5x2T2kl0t0uhdhJCCCEudkqpHK11ZpvjpCFLCCGEEOdCDsb0HJdq7aQeV+hH/V+7CiGEEOdCaqee41KtnYQQQoiLSUcNWdK1YDdasQJKSiA+HhYv9nc0QgghhBA9m9ROQgghhBBCCCGEMJx9EtFZSkogLc39VwghhBBCdExqJyGEEEIIIYQQQkhDlhBCCCGEEEIIIYQQQgghhOiRpCFLCCGEEEIIIYQQQgghhBBC9EjSkCWEEEIIIYQQQgghhBBCCCF6JGnIEkIIIYQQQgghhBBCCCGEED2SNGQJIYQQQgghhBBCCCGEEEKIHkkasoQQQgghhBBCCCGEEEIIIUSPJA1ZQgghhBBCCCGEEEIIIYQQokeShqxuFB8P+fnuv0IIIYQQomNSOwkhhBBCCCGEEMLk7wAuJYsX+zsCIYQQQoiLh9ROQgghhBBCCCGEkCuyhBBCCCGEEEIIIYQQQgghRI8kV2QJIYQQQgghhBBCCCFEN9mzdSv26mp/hyEuYubwcEZMmuTvMIToNufUkKWUigT+DowANHAnkAe8DqQB+cACrfVppZQC/gjMBazA97TWOzo9ciGEEEKIHkpqJyGEEEIIIUR77NXVjOnTx99hiItYblmZv0MQoluda9eCfwRWaa2HAJcBXwP/C6zVWg8C1npeA1wLDPI8fgj8tVMjFkIIIYTo+aR2EkIIIYQQQgghhOgEZ23IUkpFAFcCLwJorW1a60pgHrDSM9lKYL7n+TzgJe2WBUQqpRI7PXIhhBBCiB5IaichhBBCCCGEEEKIznMuXQv2B8qAfyqlLgNygJ8A8Vrrk55pioF4z/NkoNBn/iLPsJM+w1BK/RD3WcekpqZ+0/iFEEIIIXoaqZ2EEEIIIYR/vGoC7fR3FOJsdgHhzQcFLIUnZ8HPruy6t737XXhjD5QvvfBlPb8ZfrYKbE9c+LLOlXoY1n0fpqd37fv4Y93OWzVQ7u8gxEVNGWGRw99RnLNzacgyAWOB+7TWXyql/siZrnAA0FprpZQ+nzfWWv8N+BtAZmbmec0rhBBCCNGDSe0khBBCCCH8Qzvhu1Iq9ngxq6HlPbIenQAZ98C13+u6992+DL7+DK7deOHLqvg3rP4DXLv9wpd1rh4eBxP+ChMmdO37dOG6XXH77QxKTeUfv/oVARMmcOiDD0hJSADA5XIx7fvfZ+vevQBMGj6c9f/8JwZDG52qlZXB7NmdHp+4hPyf8ncE5+VcGrKKgCKt9Zee12/hPhhTopRK1Fqf9HR/U+oZfxxI8Zm/r2fYJW/FCs2RI3UEBARw/HgRERGRREZGtTmt0+ngwIEDDBw4ELPZAoDWmiNHDlFTU8uQIUPIy9tPSEgoUVFRhIWFUlBQSFJSIiEhoQA0NjZw9OhRBg/OaPsDz0d1dRWnTpWRkpJCdXUNgYGBnDx5kvT0gbjvQQ+FhccIDg4hJibGO9/p06c5cCCPwYMziIpyr8uJE0WYzRb69Ilr9T4Oh52DBw8yePAgjEYz4P6QPnz4EFarlREjhnuH+yopKcHpdBAREYnDYcfhsFNf30Dfvimtpm3S2NjAnj17iIuLIyWl+ZnrDQ31FBQUMHhwhnf92lNZeZrKykrS0vp3OF1Hy9Zac/jwIerq6ggPDycyMpKoqOhzWh6A3d7I4cOHGTQoA6PReM7z+XI6nezfvx+lYMiQoWfdJ/zt9OkKDhw4QEZGBmFhodTU1AIQFhaGzWajoaEBgODgYAICAgGw2RpoaGgkLCwch8NBXV0tSilCQ8NwOOxYrVbv8kNCgjEajT7LDW1z3+tIW/uz3d5IdXUN0dExHDuWz6lTFYwaNQKzOQCtNQcO5NGvXz8CA4OaLauuroaTJ4ub/c91hcrK01RVVdKvn3t/bvpciY9PIDQ0DHDvKxUV5URHR1NTU0NeXh6DBw8+r332XLT3f9jQUM/evXtISEgkObkv8fGweHGnvrUQXU1qp07SsnaiL/zqV21PK7VTc1I7Se0ktVPnkNpJCCGE6FrXeL601qxY4edIOkdDYyOBAQHtjj9w7Bj3LlpE3tGjGJTyNmIB3LV0KTn795O1ciUGpbjizju58+GH+dfy5d0RuhA92lkbsrTWxUqpQqVUhtY6D7ga2Od53AE85fn7vmeWD4B7lVKvAROBKp9udC5pxcWQnf02s2bNoqRkO7Gxw0lNjUAphVIKrTVaa5RS2O0uPvxwNVdemUpQkAmlFPX19XzyyRpuvPEG6usLqa7ezdSp15KXl0da2hA2bvyCYcOuJTExGKUUVVX1rFnzObNmDcJgUM0ODADN3vPo0TJ27drK6NHRlJbmEReXSlbWF8yYkY5S7ml37dpBaGg/UlOjvMvKyfmctLQUhgwJJDDQvay8vD2Eh0fQr18f7/o0Td/Q4OCjj1YzfXp/AgLcu19tbS2ffvoZ8+fPJzHRCLha5aSo6AANDQ0kJw+msrISsHP69AmmTOnbal2a5s3J2YNSxxg5Mp3IyObboqyslnXr1jFz5iAMBkOb8ze9tlpPUlLyFVdd1b/daXzX8dSpWtatW9ts2XV1Vj75ZA3z5t1IVlYWsbEZpKZGNpuvPVpramoa+eSTz5g5cxAmU9sHY9qKxXdbl5aWU1S0kfnz5xMXp7iQ3/u+y23rvduK5Wyxthyfnb2WtLRUBg2ysH79GqqrqwkPD2fKlCls3ryF2tpaQkKCGTFiJP369cPpdPLeex9x6NAhfvrTn7F9+zbKysooKDjGlCmTSUhI4NChXQDs2bOHa6+dS1FRETU11TQ0NJCW1p9p06adV26b9ucZMwZgsbj359On6ygryyMpaRyffvoJc+fOJSXFiMGgcblcfPrpWsaNW0BsbFCz5R47VsGxYxu5+uqBgD7vAzItt0l78VutJygp2cuVV6Z5x2/YsIX+/a8gNTUEpRROp4tjx/YycuTlfPzxOvr1SyIjI5CgoPPbzmfLX3l58/+Vpmm+/HInFksZI0YMJiIC8vPPKxVC+J3UTp2nZe1EX0hNbV0nSO0ktZMvqZ2kdvom26S9+KV2EkII0Z3+s307S194gQa7nSEpKWx+6SUiw919EP5g6VJeWb0au9NJUnQ0Hz73HKOHDGHMd75DZW0tR1etAuCKO+7gQEEBJ9eta/NEHA1k3nwzuYcOEWAysfyee3jgjjsA2Ll/Pzfcdx8nKiowG43cOns2f3/C3b9eRVUVU2+/nbyiIgLNZq6ZONG7zP/6yU/YmZfnjQFg/MKFKKXY9uqrnZqjle+9x9z77sPmcDA6PZ3tr73mXc//fuwxXl61ika7nbiICN79/e+5/LLLAJiwaBE7Dx3C6XIREhDAb37yE/775pvPum5NefmvBx6g8NQpjAYD35o2jVd/8xvA3RB3sLAQi9nMoRMnuPO661ixbFmbsbtcLipqa7lu2jSe+/e/SYpuftLL+xs2sHDWLDKHDwfgltmzeXPt2s5LnhAXsXO5IgvgPuDfSikLcAT4PmAA3lBK3QUUAAs8034CzAUOAVbPtMLDZrN5f5jk5eWxY8cORo4cwahRl/HVV7vIy8vDZDIxevRoHA4HmzZtprS0lFmzZnL8eBFFRUUcO3aMgoICiotLqKqqITg4GNC4XLBz5y7Wrl3HxIkTiY+Pw2qtY/XqNdTUVDN37lxsNhsbNmwkPDyUK6+8ioMHD7Bz5y7PmaqagACL98d+ZWU1H330EU6nkzlz5gBw6NAh9u3by+DBGQwYkMbu3XtwuWDYsGFs2pRNUVER1dXVjBo1ihMnjpOVtZWEhEQuv3yS92zYxkZ3DOXl5cyYMYNDhw5x8uQJiotP4nA42L59GykpKWRmZpKdnc3hw0ew2Rrp27cvQUFBVFdXAXDyZDFvvfUWUVGRTJ9+FUVFx8nO3o7TqenXL5Xc3FycTic1NTXs27ePCRMmUFVVTWHhMZKT+1JbW8uqVauwWq3MnXstdXVWNm7cSExMNFdcMZW9e79mz5493gNZ5eXlbNmyBau1jszM8SQnJ7Fhw0YqKsoJDw/nqqume7YF1NbWsWbNGqzWWq65Zjb79u3jxIkTHD9+AqXgwIED7Nq1i6FDhxEX1wen00liYhJbt25h0qRJlJeXU19fT2BgIJs2bSIgIACn00l1dQ2FhYWMHDmSrKytZGQMwWKxcPjwISIjI8nOzsbl0gwePIi0tDQ2btyI1WolNrYPDQ0NFBeXUFZWRlFREQMHDiIwMJCcnGySk5NpbLQxaNAg9uzZjclkRmtNRsZgNm/ewpgxY7DZbBQXF5OUlMSGDetxOOxkZo4nKSmZLVu2cPLkCYKCgrnyyivJy9tPQUEBsbGxjB49mvz8AsaOHcuxY8ew223U1tZy4MBBQkNDmDFjBkeOHCUqKoq4uDi2bdtGamoqe/bsQWuIjY2lpKSUBQtuwmIJwGQyobVm4sQJJCcnYzSaPAcUj+BwOLBY3Ge9TJw4EYPByNatWyktLSMzczx9+6ZgtdZRUHCMfv1SycrK4uqrp9PQ0Mj+/XnU1tawb9/XjB8/noKCfJxOFwkJ8axfv4Ha2lpGjRpJWloamzdvprKykhEjRtLYaGP9+g2Ul5dz9dVXe85WNnHgwAEKCwspLCwiJiaG//znC+x2GzU1NTidLjZt2khdnZWSkhJmzJgOQFVVFR9//BFOp4sZM2awe/duxo8fj83WyJ49exk/frznQNV2Bg/OoLKyEq01oaGhbNzo7hZg9uxrvGcHA94zmXNyckhISKRPnz6UlZXxzjvvEBQUxKxZswDN3r17yMrayqhRoxg6dBiBgYFUVFSwZ89uHA47Q4YMYfv2bZw8eZKgoGCuumoaZWVlbNu2nbi4Pp4z9zVJSUkcOJDH6NFjMRqNHD58mPz8oxQXl9CvXyqTJk2msPAYWVlZBAQE4nK5PJ9L66mvr2fSpMls356N2WyioaGeiIiILv5UFqLLSO3USXxrJ4B///vfUjtJ7SS1k9ROgNROUjsJIUTvsy4nhy9WrCAmMpLM736Xbz3wAOv+8Q/++NJL/OvTT/n3E09w7RVXMOOuu5j5wx9yasMGPv/73+k7ezZ3L1vG6IwMtu7d676ip52ryU9brQxITmbDypU8+txz/PxPf+LGGTMYkJLCzB/+kNT4eHa//Tafb93KwoceYuSgQfzk9tuZf//9lJw+zcH33qO8spKrfC7/ffyeexj93e9ScOIE/ZKSaGhsJPfQIV5pp0HnQny+bRv7332XklOnmHznnfzmH//gFz/4AY89/zwrP/mEd3/3O6ZPmMC3HniAuffeS4XnO3/SyJH831NP0TchgVt/8Qvu/c1vuPnaa4kMD+9w3RwOB1feeSeTR45k9zvvkLtvH7PuuYdnXnyRB++6C4D8sjKWfu97PHL33VTX1bWKeW1WFtf8+McAuICIK67ABSjAOG4c93zrWzz30ENUWa1My8z0znfV+PH8/aOPOj2HQlyMzql/DK31Tq11ptZ6lNZ6vtb6tNa6XGt9tdZ6kNZ6pta6wjOt1lr/WGudrrUeqbXO7tpVuFhpHA4HM2ZMZ/36DZw6dYrt27OZM2eO98dOY6ON2NgYhg4dwvr160lMTCImJpohQ4aQkpJCcnIyCQnx7N69h8rK0zidDkwmE1OmTGbdunU4nU7q6qxkZAwiLCyM3NydZGV9SUJCAqNHj6GxsYENGzZw9dUzCAx0/yiyWuvJydkBaGpraxgzxj3dgQMH0FrT2NjA9OnT2bJlMyaTmdjYWIYOHUJ5eTlHjhxh1qyZ2GyNaK1Zv349Q4cOY8iQoS26vmj4/9l77+i2rjNf+znonQAb2MROWqRISZRIiaJ6L3ZkW+4ZFzlOxvOt+2VmrblTkqnfzZ2Se5NZd7ImuYnt2E7kxC0ukiVRhUW0eqFIqpIiVSg2sQAgCJAg+vn+AAhJlmRLtprj86zFRRLnYJ9377M38Dt7v/t9SUtLpaRkCtu3byc9PY2EhERyc/NoaNjF1KnTyM8vwGazc/LkCVauXE4gEEk8Z7PZOH36NBDxRp4/fx4dHWe5dKmf2tpa5s2bjyiGUavVpKWlk5OTg8lk4vDhw4RCIZzOYU6cOAnA2NgYU6YUo1QqOHnyJPv27SM7O5PS0lLGxsbZv38fy5Ytiz3sK5VKZs6cyezZs9m1q55jx44jCAIVFbPo6+tDrb4cWmV0dJTi4iISEhLZvXsP6enpxMdbKCwsRBQhEAiwePES9u6NTJbs2bMXu93G9u3b6e7u5uDBQwSDQWpr6ygvn0lqahqBgB+5XMbevXtxu13U19dz4sRxWltbGRqyUVdXy/z5kfrLZHL27dtHZmYm2dk5uFwusrIySU5OJisri5aWFtxuF8FggMOHDwMCe/Z8Gu0Te1CpVOzZs5uRERc1NTtpbz/DsWPH8Hg81NfXkpSUREnJVGpqajh//hw22yCLFi2iq6sLjUZDamoaq1atpru7G5vNFp3E8rB3b0Q8JCQksnLlCjweDx0dHbS3n2FgoB8Ic+TIEdRqFQkJiRQXF+F2uxgaGuKTTzbzxhtvMDQ0hE6no6amhtdff4OOjg78fh+HDh1i3rz5MW9pt3uU9957j1276ikqKopNgh4/fpyMjAxMpjiWLFnM22+/y5YtW6isrGRsbIympqOIokhXVzcXL17k4MEDyOUyZs+eRX19PSMjLurq6ikunoLVmozXO056ehpTpkT68+joGE1NTVitKZjNlugkRiMmk5GZM2cyNuYBRPbt24fZHMe0aVPZtasBEHG5XMyYMQOFQk5T01EuXLhAV1cnbW2tDA4OIggCMpkMnU7Hpk0bqaurxWw2s21bNSUlU5g9exbB4NVJGkdH3dTW1rFs2XKys7MJh0OMjrqpqqqir6+X3t4ewuHI5PDSpUupq6tndHSUxsYj0TGeRHFxMX19l7DZbCxcGLnPoiiyY8dOli5dQl5ePmazmbq6Oj75ZDNqtSYmmDs7Ozl79ixLly6hqakZp3OYurpaqqrmEh8fTzAY5MKFCwwPD7NgwUIMBgNpaamxMiUkvq5I2ulOEPmskrSTpJ0k7SRpJ0k7SdpJQkJC4o+VJ5YsoaK0lNxJk/irZ59l/8mIDnvt44+ZU1zMU6tXYzIY2PqLX2AfG2N/czMJZjO/+uEPeXXTJv78pz/lL554Iraj53ooZDLe/elP0Wk0/OSv/xqjVsv/2bCBIydOYB8bY+v//b+YTSYeX7mSuSUlvPLhhwAcbm3lb55/ntxJk6goLeWpZctiZU594AFSzGb+5y9/CcBP3ngDtULB02vW3PY2+qeXXyYrLY1ZU6eSlZTEvpYWAF79+GOeX72a1fPno1Gr+eS//gunx8PBY5Ed5j/7u78jPysLjVrNB//5n4RFkbpDh76wbr/fsgVfIMD2V17BoNMxv7yc5RUV/Hbz5tg5CXo9P/r+91EoFMRfx6lkaWUloaNHWThtGk8tXkzgyBH0KhWNb71F6OhR/uvv/x6ILHKlJCbG3mdNTEQkspNLQuKbzs3uyJK4zQiCjClTppCcbEUUI+Fg3G43hw4dxmAwYDQa0et1TJ48meHhYY4da4nGs1djNseh1xvQ6/XodPpYmUqlgpKSKZjNZnw+L+GwSFJSEtnZOTidTi5d6qeiooKdO2u4eLGTOXPmIAgCSUnJlJRMYf/+A1fZmJGRTkZGBgkJiYyOuhEEgSlTSrBakxGEyIOWVqvBYrHQ09NLcnIyCQmJFBYWIggCVVVV7NrVQHx8PGvWrIk9nMXFmSgoKMDr9bJrVwNarRa1Wk1cXBzz5s2joaGBlJRUMjIyMJstxMdHJnwm4vpPUFCQH41Nr8fr9SIIMhobGxkdHSM1NRW73Y5KpUJ9g7i0VquVzMwsenv7cLnczJ49i5qaWs6f72TGjBnRXBVJTJkyhRMnjuNyjbB3714slnicTicajYampibGxkbJyclGJrs8nFJSrLEcFLt27UKn06NWqzGZjNF2jDzIQ8Rr1uv1cuLESSoqKjh16hR2u53kZCtO5zBpaRkkJVk5ePAgOp2e+Ph4jh8/TmHhA3R2dqJSqZk7dy5dXV2x+lutVoaGBjlx4gRyuYKioskYDAa0Ws1VHqcTJCcnEwyGaG1tIyEhnqysTNRqNcePH2P69Gm0t3fg83lZs+ZB9uzZg9fr59KlPpKTrajVarq7e2hqamLSpAzkcjnHjx9HpVJhtzsIh0VSU1M4ffo0Hs84GRkZ7Nu3F6/Xz9CQjbS0tGvsUSqVaDQazGYLNpuNgoIC1q5dS0NDPRcuXGDBgvksWDCf1tZW6urqmDGjDKdzhLa21ujE4DkKCvJZtWoV7e1nqK+vZ/369QSDQZqbW1i37lFCoSBHjjTyyCOP4HK5qK+vi3rYXkYURTo7LyKTyRkdHSU5ORkQsVqtFBbm4/cHiYuLIz8/n/HxcRoaGhDFiLjQ6bSo1Sri4uLo7u5i4cKFTJqUSUqKNTp2dEyeXITXO86BA5GxN2nSJFJT03A4HLS1tTF1aiktLS2Mj0cmQScmNQsKCvjwww+ZOnUaer2e4eFhMjImodfr+SxutxulUklSUhLJycmcPn2KnJxcUlJSMJniGBvzIJPJmDKlhKSkZFQqVSwfhko1cR/MiCL09EqqSA8AACAASURBVETuc2bmJHw+PzKZjKSk5Fhom4SERNrb23n88cditgqCwOTJRdG+omJkxMXoqIfU1FR0Oi2nTp0kKyuLjo4OPvroQx566CG0Wh0mkzGWv0NCQkICiGkPSTtJ2knSTpJ2krSTpJ0kJCS+gLfvXO5AidvEMcD0mdfCUODfAdt2ADB1DPwhYNtMHDaYbor8DWAFFAKc3vRdqvrhBTX8uRK8wTD/PuV92Pb+9a/bAzo5yHZUxF6KV0L3iY84LX6EHEhtXBU7liPAGXvkur4QTHH9ErZFFqsmB4j4mkVtemYy/Lauml9XVfPbP8CSrMvHPkvGv8OlsVi1gcjOJIBUPfT88MZNVzDwY9j2YwDUQRjtHYRtMxlxw6+3bOH1z+xgOrXxO1T2wboNsP0c+EKXr9u96wcQ/MHn1u1UHfjDl+0jeihVF62fI9KGN6orQPyPYMQfuaYMeL+iAhGoeO45Mk1w4W8i58mAwYa/AHfk/6GWyK6tK+9XDBdgv3E7SUj8sSEtZN0l/H4/DscIgYAfheLaZvd6x1GpIiFJZs2ahVJ5Z26NQqFkxYoVvPfeewQCAcbHx+nr66W1tZVwOPSly01JSaGlpZnBwQHOnj1HWVkZer2BlStX8vbbv8fjWUhcXMRD0OVyc/bsOUZGRqKhLy7HfTcaTaxatYq3336HoqIiLl26xODgAGfOtJOVlXnD64dCYQKBAIIgMH36VEymy94PCoUCrVbLpUuXPreearWKVatW8vbb7zBjxgzcbheXLvXR1tYW9UY9QVJSEhkZk6KTMy4MBgNms5nCwsKryhocHKS7uyuaMN36uW2nUqlISkrk8OHDfOc7L/K73/2O3Nw8TCYjer2e8+fP4fWO4/WOIwhQWFjIRx99xPPPP0dDQwMej4ekpCSCwSvrb8LtdqPVamOTThNhhSAyAdTb24vNZmNszINcLqekpIRNmzby+OOPI5cryMnJoba2jpde+g6bNm3CaDRFJ2qyyMhIJz8/H78/gMPhwGg0oFarKS4uxu12c+7cWf7kT57l7NmzCALMnFnOhg2/pbKyknBYpKXlON/+9rdxOBwAJCUlcelSP0ajAYfj6m/h1NRU9u3bh81mY2jIhtWaQn9/PxqNBpvNRmpqCoWFD5CQkIDX60Wj0WA0Gjl79hwJCQnRcE8Rr9nOzgvodDoSEyPt1dfXS1XVHHQ6DSdPnkCr1REKhRkYGKCj4wzZ2blRT1yRGTPK8Hp9qNXqq7zkR0ZcnDt3DqfTidlsjk1UXkl6ejqtrW2xvnEjent76evr5dSpUzGv+O3bd2AyGbFaI/1IFEWampqZPn06vb290fY30dHRjskUh8ViwWKxxMo0GIyMj3vo6enG4/EQCASAq/NBhMNh2tpakckEPJ6xWJinK3G7XRgMejQaDfn5U9Drdfj9frq7u6LtrmV0dJTCwgKampqprKy8bu4HtVqNUqng4sVO+vv78fv9hMMhKisr2bt3Nx0dHTdsHwkJiW8WknaStNONkLSTpJ0mkLSTpJ0kJCRuwLfFe22BxBeRsAOSkgB4+sNnIq/JztGhWgar/w2AEz2voZK/BqsPE//qo1wUjbB6AwBDDgdBcTnFD/8aysp49gc/ICR8ik4j57Ft09j8i19c/7pHfoSneTPhlYdiTlOOf53HpNLVFK9dS+jj9TwykIPGqOTdx96h8731xCcMw+pNqP55FqdMf8pDq78LQPv+fwRhO6w+AsA/znXxn4sX84n6J5wf+Wve/s83YerU65rRs/ry3yuiYfx2vvbaF7fbP8yEWb+EWbMi///qYbAkwOo3MP1kCd9bvpz//OG1q2CvvPcen3T8hA//1//iwYULeXbTc7z/b+2EC78Pq9d/bt0mez5Ec/h/Mx7dvXUNH30Pwd8Pqzdf/zjgWA0n29uZ9dxzeA4d4um/+isGHQ7q33jjqvPi/m0+n/oW8dzqSF6yXYf+P+K0tbB677WFDg1R1vkDAJpfbv6ilrtjlL1Sds9tkPiSfM2cHm4qtKDEVycYDNLefpbS0lISExN44IFCEhMTkMkEZs6cSTgsolZrMJlMHDhwkBMnTjJz5kwUCiUGg4GSklLUag1lZWWADKs1mfz8vGiCX5DLFZSUlGIwGFAoFMycOROtVkNZ2XQEQUZycgq5ubkMDAxw6NAhpk4tJSsrm6VLl3L0aBN6vYGSkimEw2HkcjlGo5GSklIAMjMzSU+PPHwnJycBMmbMKEOlUseumZGRFg0DcoQHHigkLS2Vrq6LHDlyhPnz58c8WeVyBVVVc+jvv4TdbuPBB9eg1+uYPn0agiBw4cJ5GhuPsnjxIrKyJjFjxgwOHz5CdnYWmZlZiKKIQqHAarWSm5sHRHJMGAwGBEGIenD2sG3bNjIzs0hPz0AuV7BkyVKOHTsWq6dWq2H69Eiyx/T0NDIzM+nru8ShQ4cpLy8nKyuThQsXceRIIxZLJMTJ7Nmz8Xq99PR0UV5ejt/vx2g0oFSqeP/993G7I+4SWq2WOXPmcOZMO3K5ggUL5qPRqCkrK0MQZBQWFpKYmIQgCMyYMROVSsWMGTOprKzEarVSWTknlqNg5cqVdHR0MDLiZvbs2QiCjPz8fCorZzNp0iSqqqqoqqqKJoKWERdnjtU/GAxiMsURDAZ599130Gp1lJSUADBv3lwGBgax2x1UVlYil8soKChEo9GQm5sb83yurJxNamoqc+ZUUVU1B5lMzooVK7Db7ezbt5/+/n68Xi86nQGdTs+mTZvw+bzMmjWLxsZG8vPzsFjiSUtLRaPRMHXqNDQaDYsWLaKpqYnk5GTS0tKYNm0aohjm/PlO5sypQqVSM3VqKQaDnsTERGbPnsXBgwfJzMyioKCACxcusG/ffnw+H0uXLsNisZCfX0BBQSELFizAarXi9XrZv/8AQ0M21q17DJlMhs/nZ/HixcjlclQqNatWraalpYXTp1tZtWoVRqORysrZNDYeITs7h6ysTObNmwfAvn37uXjxYvR+RcbhRDiqS5f6sNsdPPjg6mg/l8fCKUVC68wmFApy5kw7c+bMQafTUVZWhlqtQqfTM23adEymOGbNquD48RPExydQUVGOXm9gwYIFVFXNRS6PTNCGw0FCoSDLly9n5cqVuFwjPPTQg3R1ddPR0X7NZK/RaGTZsuU0NTVhs9lJTEzigQcik4cTn0OlpSVotTqOHTvGgw8+iMGgQyaTIQgCJSUlGI1GvF4ver0BnU7Hxo0bGRsbY9WqlbS0tDA4OMTwsINly5ayatVqRDEc2/aemTmJjIwMBEFg6tRpmEwmVq5cycmTJwkEgsycWY7H4+Hw4UNoNDqmT59Obm4OKSmpd+CTWEJC4uvE9bQTIGknSTtJ2knSTpJ2krSThISExB8Vfa5e+ly9AHywaxeNp05xvrubn27YQGVxMQDfefhhDpw+zQc7duAaHeXB//bfiNfpqCoro/bAAd6pqeG3P/oRH/z0p1QfPMgHO3bc8HrBcJhv/83f4PF6+dv/+A/c4+P8xbPPUlFaSrxez6e/76RrqJuPa2rYd/Ik3330UQBmFRXxk7feorO3l8ZTp3i3tvaqcs0mE1Oysvj23/89iUYjs26wiHWn+O4jj/Dapk1saWgAoLu/n7/9j/8AwO50IggCeZMm4fX7qf/tWa5c7v28uj37rW+hlMt55PvfxzEygt/v55P6en6/+cYLV9djU3096dGwgcfa25lXVnbNOWvnz+ftmhqaTp+mpa2N323fzsMLFtywzAvDF7gwfOGW7Ljd3A82SHwzECYSZ99LysvLxcbGP/50EP/yL5Cdff1jFy9epLq6mpycbGw2G/PmzSM7O+cLy2xtbaW2tob161/EaLw27Mmt4PWOs2XLFoxGIytWrLyuR+C9xOkc5sMPP2LmzBlMn371h/3Y2CgbNrxFVlYmHo+HjIwMZs++vlfj7UAURXbu3IHDMUxcXBxO5zDr1q1Do9Heket9EaOjbjZseIvs7Cw8Hg/p6RlcuHABnU6LXK4gHA7x0EMPxR7or8epU6c4e/Ysa9euvaV2O3jwAGfOnImG5Bni4YcfwWS6en/80NAQmzdv5oUXnkMuV96gpK8/E2PIZIpj+fLl990YuhnC4TCHDx/ixImTvPjiehSKyP3av38/HR0dWK3JN7zPd4rOTviHf7grl5L4AsrLy2lsbPz6dew/Qr6p2um5cwJv5UW0q6SdvhhJO90YSTvdH0ja6c4gaaf7B0k73T98U7QTEPGwl3Zk3fc079hBWXRH1oI3IwsVh37pZUVFBfVHj+INBChMT2fvhg0kRHMgrv+7v+Pd2loCoRCpFgsbf/YzSvLzSVm6lAXTp/PJz38OwAs//CEfNjTQV1ODyWC46rr/z49+xHs1NeSmpdF89iwqhYL/+Wd/xl+9+CIAjadOsfDl5xkfB5VcztPLlvGbf4vsELM7ncx9/nk6envRKJWsmD2brfv34z9yJFb+q3/4Ay//+Me8vHYtv/rnf76ptriVHVnCzJnU//KXLI7uyCp++GFSEhJiO5u+/6//yptbtjDu9yOXyShMT+fkxo34/X5mPPkkrd3dyASBhEwBW1eY//3/fp+/XL/+C+vW0tbGE//9v9M5MEBYFDFptfzjd7/LX65fz4rvfY+L/f2c+YKFrVUvv4xWo+Hjn/0Mw5w57Hr1VSpKS686JxwOs3D9evafOgVA1ZQpfPqb38R2z11J89AQi5ufAsD5A+cXtt2dwvxj8z23QeJLch9+XwiCcFQUxfLrHpMWsu4en7eQJYoiIyNOxse96PV6jEbjTT3IuVwuQqFQNCzHV9PHoVAQm82O2Wy+YW6Ee4nP58PpdJKYGH/NA70oing8HlwuFyqVEosl/rof8reTUCiA3T6MKIYxm82oVOp79vB9df1VWCwWAoEATucwIJCQEB97qL4RY2NjCIJw3dAon0ckEbyDQCDixazVaq9pB5/Ph8/nu+l+/XUlFApgsznu2zF0M4iiyPDwMEqlMuatD5H7PDzsIBgMEhdnRqPR3LV7KU3G3D9IkzH3D99U7XTlQpaknb4YSTvdGEk73R9I2unOIGmn+wdJO90/fFO0E3BfTkxKXMv1FrJ2v7j7XpoU46vYc/j4cSpffJHu6mrSrZ8fLvpecr+1+ZdBWsiS+Mrch98Xn7eQJeXIuotYrZGHiusjAJHY7D4fRMPf3wQRr76RkS847aZQAFbGx29HWXcCNWClu/t6xwRAD+jx+SAaqeYOowQiScfvfZtdr/5qIAWAnp6bKePaZNc3hxyIiK/P5JS/AjWgvoV+/XVFyf09hm4GAYgHwH5Vyo2buc93hvtY+0pISNxhrqedLv8vaacvRtJON0bSTvcHkna6E0jaSUJCQuL+JxgKMTA4iHX1algffXHmzHtp0mXWR3/foj1B4PtAMZC+Zs3ttel2sz76+35p8y/LD6K/76Xj02ds6L05IX3XEUWR5ORkVCrVvTZF4ksiLWTdRaI7ZSUkJCQkJCQkJG6Cz2qnf/wf0i4DCQkJCQkJCQmJrz+jLhcne3qwAmiiL/7LPTToSibWIW7BnqFRsP4YtHJo+C4w6U4Ydhv5EnW873ABE4EBfn8P7Th39b/BYPDe2PEFtLa2UlBQQF5e3r02ReJLIi1k3QNEUSQQCKBURsKV+Hw+lEolcrk8djwYDCKXy2MhXq58z0RIiomwkFeGqAgGgwiCECtrglAoRCAQQK2+vSFcbnQ9iMR1DYVCKBSKW77mV2mDK8sIhUKEQiFUKtWXrncoFCIcDqNQKAgGg4TD4Vsu73r1+SL7J45/ts5w/Xb/orI+y43u3Y2ueSe4lXt6K/W7mXPD4TDBYPCaek6892b6381yr957JaFQCFEUr0lofi+ZGFsymewq2ybqrFAormr/CW7UDl/lM+fzuJtjQkJC4vpMjMOJvyXtdC2Sdrp8XNJOfO7rNyr3i86VtNO9R9JOEhISN83b0ti73zEfg7K7kzrxrpBkgPDXeVFI4raRtS/7XptwXbIADkV/JL6W3D+q/BvAa6/BwACEwyI1NfXMmTMHm22I48dPMGvWbNLS0gAQRdi9ex9FRcUkJ0+EXxmnoeFTVqxYFstxYLfbuXTpElOmlMQeEI4caSYpKfGqZOfhcJgDBw4yNjbKvHnzbzmOfyDgw+8PotdfGz6lqek4cXFG8vIKrjnmcAzT3NzMkiVLb3mHqyjCrl17mDZtKgkJiUAkD8WOHbUsXrwIrTZSh6GhIYaGhigqKkYQBMLhMB7PGDqdHlEMs2vXLpRKBVVVVXR3dzM4OITZbCYlJYUzZ9oQxUj7ZGdnkZaWcV1benv76Orqpry8nJqaWuLi4qisnP25yb9vXJ9SEhIiIUYCAR9NTS3MmDEdpfL6OQF8Ph+1tXWsWLEcpfLy1tfDh5uwWpPJysqOtU1LSwuTJ09Grzdct6zP0tjYTEJCIjk5OVe9fqNr3gkCgSA7d9awbNlS1OqIC9Lo6ChnzrRTVlZ21cSVz+fj1KnTTJs29Qvbvre3h2AwSFZWzg3PGR520tTUdFX/FEWR06dPkZJipbW1jdzcvNi4vNwuK2KL0DeL2+1m//79LFu2/LoTl59HKBSmtraOefPm3/S9vR5tbe0EAkFKP5NI9F7S09NHT08PSUmJjIy4mTFjBhAZL/X1u5kxYyYWSyRsWCDgj46Xshv2S7vdzvHjJ1m0aNFt3VXv9/uoqbk8JqxWaYethMTd4rPaiWXw0kvnJO10HSTtFEHSTpJ2krSTpJ0kJCS473KeSFzLsOxdjoyMUMGfXX7xfok8sD76+36x506wPvr7617HibB+f3IPbfjR1f/WWWtJTU1FqVRis9koKCjgwoUL1NXVkZKSgkwmY9asWXi9XtLS0jh16hR79+7lmWeeYWxsjIaGBsrKypg/f/5tdYg5evQocXFx5Ofn37Yyv/Z8zZwepIWsu0h/v0hi4iiBQIBg8BwpKTM4dmw/y5fPZPLkZMbH3fh8XiyWBOAi8fHpGAwCZrOZ8fEgfv8ZkpLmEgqNEhcXR3KyjtTUeFJTwecbZ2xsFLm8G7NZwaRJQex2BwaDAVEUGRo6zAsvrEenk6FUhhEEAb/fh1wuRxRBoVAQCARiD4rDww5UKjVqtZqzZ89y8uQJHnnkEQBUKnXUy86PWt2HwZCI0WjGYDCiUqkJh0M4ncOEw27C4QtkZ0fCpIqiiN/vw+kcIT4+nnA4dFVZAEqlClEMEwqFEcXzJCTkYDCIWCxmRBECgXaSk2cBY5jN8SQl6XG5QqSkRK7hdo/ym9/8lhdeeAG/34fH08pLL71ET08nly4dYf78BSgUCiwWDUlJmYDI9u3bUatVZGamMTxsR6XSYDAYCIWCOJ1ODAYHMlkXWu0kZLKLPPro8ygUYZRKkXA4RDgsEg6HYw/ogYAflUpNMBjE4XAQF2dCrdYgiheIj8/BYCCaYF6BSpVCRoaMcDiAw+HAYNCjVquRyeS4XCMEAkECgXYyM5cSCo0xNuYhPt5CS0svJpMSg0GP0WhCpVKhUllJSpIjCD5UKhXhcIhQKByzUSYTUKs1+HzeaF/pwWxWkJbmRxTDuN1uTKY4gsFwtJ3nEgy6Y8nPFQoZgiCP1c/j8TA+7sFiiY/2o4jnpSiGGR0dIy7OxPj4OOGwiMlkuspreHTUjd/vx2AwEAi0k5Q0B1EcxWy2EAyqiItLwmoNIpcLyOVK/H4/oiig1SaSkSEjEPBG+1r4Cm/Zy/aZzQZCoRAmUwCZDGQyBX6/H6VSiSiGcTqHEcVRQqHzZGUtwe12EQqFMJvN6HSJ6PUazpzpwmJJxGBQEhdnJhAIxdolFIokqb/S89Xv96FUqnC7XYTDImazOToWRlAoPASDZ8nOXo5cHpkADAT8BAIBAoEgcXFxsXadGA9KpYqxsVECgSB+fwfp6ZVotV6czpHrJqAXRRGv14vL5SIxMR6Q4XQ6UChUaDRqurtt+HxejMY0dDodKpWSYDDice/3+1EoFIhiGLvdgdkch0oVmSCcOBapY6QNx8fH8Xg86PWR/hoMBmJjPzJ2w1fVRaFQ4nQ6UKs16PVXji0bCkUPJpMCj6cfkykbjUaNVqsjFDpPYmIhWm0Qi8UMRMZLaioIQsTDNxiM7M4QBHA6nQSDTsLh82RnL8LlchIOi9G2neiXo1gslthkniiKjI+PMzo6Sny8hVAoHB07l72TPzsO1erPy3UoISFxu/msdgLo7ZW0k6SdJO0kaSdJO0naSUJCQkJCQuJ+5Pjx43g8HpxOJ0NDQ8jlctra2pDJZITDYXQ6HdXV1SQmJtLc3ExeXh6BQID6+noKCgpQKpUx50QJiSuRFrLuIpcu9bJz5xZ0Oj19fX04nU7OnTuH3+9Hq9Wyb98+4uPjKS8vJxwOU1NTi8lkQq1WsXz5cmw2O1u2bGZoyMaaNWswGAzs27efVatW8s4772I0GmlrayM3N4fdu/fgco1gscRjsZjp7e1l//79jI97mDNnDgaDkc2bP2HKlBKcTieLFi1iy5YtVFRU0N7ejsvl4sKFC8yYUcbAwCCtra0kJ1vp6enmkUcexeVycfDgQdRqFXv37qO9vZ1wWOTb3/42NTU7cTgcjIyMIJNd9qAcGXHy0Ucfo9FoSElJoaenh8cff5zBwQGOHTuGXC4nOzubS5f6ycjIIBgMsWPHThQKGSkpaaxYsYKxMQ/V1dX4/QHy8/PJzc2lsbExNlF07tw5urouUltbi8lkpKenh8bGRoaHHUyalMnQ0ADZ2bloNBrS09NxOofx+fwUF5fQ3NzMhQvnMZvNzJ8/n02bPiEYDHLp0iXS0yMeAhcvdrF7924cjmGeeupJDh06jFwu5+zZDtaseRCZTOCTTz7hscce5+OPP0Kv12O321m37jGCwSA7d+5AoZCTkpLKypUraWjYxSOPPEptbQ0KhYK2tjYefvhhRkdHOX78BKIo4na7o/XeisUST2lpKaIIn37aQGpqKj6fn6eeeor9+/cxffp0jh49ylNPPUlLy3E8njH8/gBdXV0Eg0GefPIJ3n//DxgMBs6caSM7O5sdO7bT1dWNTqfDYDCwZs0anE4nW7dW43a7KS+fgSDIsdlspKamMjQ0RH5+PjU1O9FotEybNpWSkoin6ubNmxgctEUnZ8KYTHH09fWwfv2LJCQkIooi7e1n2L//AEqlgoqKCkZHR9m6dQsul4vKykry8wvYtauBwsKIp3pFxSw+/vgjysvL2b9/P48//gTvvfcuzzzzDP39AzQ3N5GTk0N/fz8ZGZPo7+9DrzcgCAJerxez2UJJSQnvv/8+3/rWQ+zffwCHw87IyAiCIKO//xL19fVYLPHMnVvFsWPHycychCiK1NfXodPpMZkMrFq1muFhJ9XV23C5XJSXl9PX10tpaSnJyVY++OAD5syZw+HDh7FYzMybN58jR47Q29vL+LgHn88fGwsezxi/+tWvsFqtOBwOVqxYSWPjEdatW8fw8DBHjjRSUlLCrl270Go1DAwMEAgE2bFjIwaDkZycbIqLp1z1+eJw2Ni48RO0Wi15ebn4/X4GB4fo6emmqKgYrVbLkSONDAwMMDbm4eGH17Jjx05WrlxBQ0MDq1atYuvWrchkMgwGA6tXr0Ymk/Ppp58yadIkcnNzeO+991myZDG7djWgUim5dOkSzzzzbbZtq+ZP/uRZuro6OXnyNG63i7VrH8bjGWPPnr1kZ2fT1dVJXFxkbG3cuJFwWKSvr5dJkzIBaGlpwev1YrfbeOaZZwgGA2zfvgOAzMxJLFmylF276pk1axbnz59nzZoHqaurIzs7m/b2DlyuERyOYdRqNT09Peze/SkWi4Wqqio++ujj6ERRiIKCQhYvXowgCHg8HjZu/Biz2UJWVibNzS08/fTTtLefob9/ALM5jpaWYwiCgMvlvlNfDRISEp/DZ7UTIGknSTtJ2knSTpJ2QtJOEhISEn/UHD16b6//5oKoHbu/1Nv9gQB79+5lyeLFhMNhPvjwQzIyMmg9fZqEhARmzZ7NwQMHCIXDTJkyBbfLRW9vL8FQiDiTCYfDQSgcxmg0AqBSKlGqVBFHJKWSysrKe1ZHURSpqa1l6ZIlyOURvffOO+/w+BNPkJqS8tXtuhWGhqD5qahhzttSZHV1NfPmzcNkMrFv3z5UKhUOh4Oenh7a2tpYu3Ytra2tVFZWcvDgQf705ZevKUMul2MwGAiHw0BEs/h8PrxeL2q1msLCQmw2Wyz8eH9/PwBlZWVUV1eTnZ0ddWL7eu0WkrjzSAtZd4lI2I1WFi1aTHZ2Fj//+c9JSLCQk5PLvHnzUCgUeDxjVFVVkZgYjyDAvHnzKCqazCuvvMLIiAuj0cjDDz9CR0c7p0+fYsaMmbhcLtrbz5CVlcWyZct45523EUUYHBwgMTGRadOmoVarSE9PZ+nSJRw7dozjx0+QnJxEfHw8wWAQj2cMiITw8Pm8nDt3jscff5xgMEhaWjpWawqiGGbRokVUV1dz5kwbdrudjIwMbLYhZsyYwfz58/jlL3/F4OAgnZ0Xeemll7h48SK7du2KtUFLSwu5uTksWLCQQMDPli1bOXv2LBcuXCA7O5u0tHRef/3XpKdnsGjRIvbu3cuCBfNJS0vjjTfeZMmSJajVKlasWIlGo+a3v91AamoqLpcrdo3CwkLS09N58ME1jI15aG1tY968Kl599dfIZHIUCjlvvbWBl1/+MzQaDceOHaOgoACNRoPNNoRSqaKsbDoulxu3e4T161/k6NEmLlw4T2lpKRcvdrFs2TJef/11bDYbp0+f4qGHHqKxsZFwOAgocDpH6O7uor9/gMrKSmw2G+fPn0culzF37jwyMtKj9Yl4Vo6OjmKz2Xn22Wfp7+8nKSmJ3bv38NhjjyEIAq+//jper5eRERcVFRWkpqYCUFFRQWXlHH7zmzcZHBxgZMSFXq9nfHycS5f6okP+IwAAIABJREFUOXHiOMuWLSM1NZWNGzfxwAOFnD17lszMSSxbtpx3330XgNHRMWbPnkVJSQmvvPIKXq8XrVbHgw8+iNc7zscff8wLL6znzTffoLX1NC+++B22bdvGnDlzmDy56Kokjm73KPPmzWPSpAzee+89HnvsMRoaGhgeHo5Nxuzdu4+VK1eQmpqG1+tFo9GwZs0aXC43u3d/Sm5uHiMjI+Tk5PLxxx+Rm5uH0+nEaDThdI4QDodxOiNf0MFgALd7lMmTizhw4ACtra28+OKLNDc3A+DxeNBotEBkMnB0dJTOzk5eeuk7dHV1U19fF+33fkpKSjAajXg8Y/h8PkBgzpwqioqKeOWVX+H1+tDpdDz00IOMjo7xySebqKqaS2NjZOJEo9Hg8XgIBoNMnToVpVLJmTNtrF//IjabjY0bN8baKeKJLvLYY4/R2tpGR0cHZrOZtrY2BgYGycjIoLGxMXb/fvGLnxMMBrHb7UyePPm6iSkbG5soKppMZeUc/H4fv//97/nWt9Zy4MABUlNTcDpHKC4u4qGHHuLXv36dUChMenoqr732GmvXPszg4BAATz75FIFAAJlMjiAIZGVl0tTUjFKpQKFQMDg4RFJSItOmTae6eit6vQ6n0xnNWRPA6x0nKSmJ06dPMTY2Snp6Gna7DZVKTVlZGU7nCKOjY6xf/wKNjY10dXVHx24B69atY9u2as6caUcul7N48SISExN56623WLBgIU6nE6s1hfr6eoaHhzl37hylpVPp6enhpZde4uzZsxw4sI+RESeBQIDS0qkYjQbGxkZZu/Zh9Hod77//PgsXLkQul+PzRXY5zJw5k5ycXJqamunu7ubYsWNUVMyioaGBdeseRSaT89prr32l7wAJCYlb53raqQsk7SRpJ0k7SdpJ0k5I2klCQkLi647caOTkxYsogK6ItKR54uDQ0D2yKkLXaGQBovlL2hEIBDg1MoIl+v6suXOxDQ2RPX8+KqWSXiBx+nQARlQqRIOBxKRIKOmxsTEmTZ5MKBhkfHwcnU4XWdAQBJqbm0lNTUV9G9rny9ZRFEVaXS7ibTbkMhlut5vs+fNpHxuj/y7fN6XpziZZKysrQxAEQqEQe/bsIRgMcvr0aZ544glMJhNms/m67xMEgYMHD7J8+XJKS0tJSUnB4XAgimLU6VBNSkoKH374IU8//TRut5sFCyILiy+//DJarfa6IdolJKSFrLuIz+dHJpOhUMhRqS7HKRcEgYyMDFatWsX27TuiXpwCWq0GQYiE0giHQ6jVKtRqFXK54qoHYK834q0ok8li7/nWt9Zy9OhRNmzYwPPPPxc7d/LkIt599x0GBvpZuXIVfX19iKIYS+4d+W4Q2LZtGxaLhczMSXR2dsZWwUtKSqip2Uk4LFJVNZfdu3djMEQ8OAUhkuR5IhF2xJbLq+eBQBCdTosgCCgUSqZOncq+fXvx+wMsX74cr9cby7sgCCCTCej1+mgy4zCiKCKXy9Fo1AiCLBoWJXyD1hauuLZAYmJi9CE2l9OnTxMMBhgfF2lpaeG5555HEAQWLVrMyZMn2LDhd6xevYpgMAxE6nElcrmC4uIp7N27F5VKTVJSIgpFJMxQKBQERPz+ACaTicTEBObPX0BaWhotLS0YDHpkMnmsPhP3bXzcw+bNn1BcXIzBYMTv9yEIAipVJJF9QkI8jz76KDU1NfT1XUIQQKOJtOXEvZsoq6ioiP37DxAOi6SmpnDmzBl8Ph9FRUUcOnQodp5Go4n2PzAajQiCLGpTJHG0SqXC6/USCAQRBKLhWjwIgkAwGECpVF2T8FwQZBiNBtRqDWazGYVCgVarvar9gsHLIWUUCnnsnMhERih2Xnx8PAqFgv3791FcXBwLPxTpo7JYEngQEQQBpVLJyIgLQbicG+KybZGQS6FQONo/ZWg0akAgPz8fhULOli2bWbJk6RV1AYPBcEWuiUi7KJVKZDKBYDBIdnY2DQ0N+Hw+KivnkJ2dhUaj5qOPPmbp0iUEAgEEQYiGPLrak0StVqNSqVAo5IRCIcrKplNXV0coFGbBgvmcOnUSmUyITYJotRqeeuopGho+5ezZDtate/wz48sfuydKpQK5XM6OHTuwWMzk5eVx9GhTtD7y2JhSqSLhkibqI5fLo+Pz8ldDVlYWDQ0NHD58mJkzywkE/HR0dDAyMsKCBQuRyWSx3QOR/g9TpkyhunobgiDw5JNPotFoOHnyOG+99RYrV66KeuUIsYkyAI1Gg0wmi/UvQZCh1xuQy+WEw5fHi0ajJi0tnb1792C1WtHptASDQWQyIdrXBIqKilCp1Gzc+DErVqxEJpNjMOiQyRSEQmEgUpbFYmHdunXU1tbS29tDSUkJBw8exOPxMGlSBn5/ZFJOpVLeV4neJSS+SUjaSdJOknaStNMEknaStJPEHy+CIDwAvHfFS7nAPwEboq9nA53Ak6IoDguRwfwzYA3gAdaLoth0N22WkPiqTC4v59CpU5QBzmjq1LKJg6tW3SOrIjijeZfKvoIds26TLVcy/zaW9VXqOOM22vGVmciRdZt2L6254u8rswSvvvKkP4vkdcu8QRkTC1GdnZ10dXVd95yJEIOffvrpV7D21rh48SIPPfTQXbuexO1HUpd3kcLCAurr6zhzJp2BgQFAQKGQI5MJ9Pf3097egUIhA2SAQF1dHVarFa1WG3uwhcgkxZUPwAUFBbz99u8BOHnyFHl5+bS0NOPxeKIPgAJyuQJBEDAajeh0emw2W3QSQcH+/fvZsWMH58+fY+HCBYTDkQdit9tFf38/FouFoaEhjh8/zuTJkxkbGyMpKSk2UTLxkCmXKzAYDMTFxbFt2zZstqHYAxRAcXERf/jDH3C73ej1eioqKrDZbOTk5KBWq9i6dStr136LY8eOcebMmdiDYaSdIvb7fD62bdtGIBAkLy/vmsTFSqUKg8HA3r17KSmZEmuz4uJidu/+lI6ODtRqDVqtlra2NtLS0jGbzYiiyKlTp3A6h5HJBBISEgmHw+zYsYNz585htVoRBFms3adMmcLmzZt57LF1yGQKcnPzqKmpJRQKEggEyc7O4sCBA3R2dhIKhUlMjEehkMcenifuBxCdTInk3oiELhmjoKCAbduqUSpVeDxjOJ1OTp48GX1YjUyY7dmzm/7+S3i9XqzWy9uXJ08uYseOnSxduhRRhLq6etLS0jh6tIm8vDzeeecdQODkyRPk5eVGH6SF6MSKAhAYHXVTXV2N0zlMSUkJTU3NZGZO4oEHHmDPnj1MnTqNnTt30t7eTkZGOtOmTY/WKzJxIQigUMij/VUWq6sgCJSWlrJlyxasVit5eXlXJB8XYu+Z6OcT5/75n/8FEMlHolarsFqT2bFjB319lzAYDDQ3N5GWls7kyZPZvftTjMZIXon8/Hx27qxhcHCAoaFBDAY9ZrOZbduqsdnsgEh3dzcXLnRGJykuf/HL5fKr+jYIuN0uqqu3MTxsp6SkBL1eT1paCufPd5KRkU5n5wW6u7uRy2VoNFpSUlKort7K2JgnNmF2uX0U0UlHGTKZjNTUNNxuNykpKej1BkpLS6ipqcVqtWK32xgf93Lq1EkiEwnXCpSSkhI2bdqEzWbDZDISCoWRyyPeTH19fVdNmigUChwOB+3tbXzvey+zZcsWnnzyCQYGBtm2rRqAlStXIJcrUas1ZGRkcPRoE48+uo6Ojo7YZMr58+fJzJyExWJhx47tdHZexGq1YrWm4Pf7MJniMBqNNDc343Q6EQSBpKREAoEAO3fu5OzZDtLS0pDJBI4dO45araat7QzPP/88ra1tUR0mfGYiRGDatGn8+tevsX79eoxGIwaDgW3bttHfP4BMJtDZeZGurosxz+hIvxJidZ9gZMTJiRMnYp+TBQX5bN26lVmzZqFWaygoKGTbtmrUag1jY2PXtLmEhMSd51rthKSdJO0kaSdJO0naSdJOEn9kiKJ4BpgOIAiCHOgFPiYyRVsniuKPBUH4QfT/vyUyp1oQ/ZkN/DL6W2KCt6WQXPc7VuBvMu61FRISt5/v6r4X+cP/+eehBrx32porsAJH/hKO3MVrStxWhCsflu8V5eXlYmNj4702447zP/5HEI1mALlchiDISEiIx+Vyo9dH1rgHBweRy+VYrVZGRlyIYhiPx0NCQiJqtQqHY5iEhAR8Ph8+n5f+/n6OHz/BE088wdDQEH6/D41Gg06nZ3zcw+joGGazGYPBgMPhID4+HplMxs6dOzAYjFRVVSGKIg6HPZqIODKx8f777/PEE0/Q1XWRjo6zPP300wwODkYfpJIYHh5GqVRgMBhxuVwolQq0Wh12uw2LxYzX68dut8fqFR+fEPN+dTjseDweEhOT0Gg0OBx21Gp19P12EhLi8fn8BAJ+gsEQRqMRuVwes99utzORbD0xMZH29nbOnTvHww8/ErvG6KibkZERkpKScLvdsbAsg4ORWPnJyUmo1RpGRkaQy2UYDEZEUcTlGsHpHMFgMBAfH4/b7cbpdKLX65DL5eh0etxuF/HxCfj9Pl599TXWr38Bo9GEz+djaGgQjUaDKEJiYiKjo6M4HA6USgVWazJOpwuDwRB7ENZo1GzYsIHFixdz9OhR1qxZzf79BzGb45g1azaDg4Oo1ZGk0WazmcHByAReSkoKY2Nj0dBGHiwWC0qlkt/85jc8/vgTxMfHMzg4gNlsRqmMxJoNBAKoVCqSk5NxOBz4fN5YX5noNyqVGrvdjsVixm53ABEv0YjtkXaRy+WMjDgxmy3YbDYCgQDJyVZUKhWiKDI8PIxer0OhUOJ2u4iLM+PxjEUnUTSxMgcGBgGRpKRknE5nLFTT6Kgbr9fL9u07ePHFF6NJ3+0kJ1sRxRDDw04SEhIZHx/HbrdFt5hHPIwNBj1yuRyn04laHfGu12p1sUlBQZCRmBh/Rf+MeKDqdHqGhoZQKpUkJCTw0UcfUlFRTnx8IjqdFqVSdcN2kcuVjI2NMT7uidrlwWazo1arSEpKjvaLIfR6LaIICQmJ0W3ZQRyOYRITI3UJBPyYTHGxsWU0mgiFAvT3D0QnDwQsFgs22xChUIjk5ORYe04QDodxOOzRrfd63nnnbZ544gn6+wdoaWnmscceQxSJfh7YUSgiydvj4sw4HHaMRhNerxen04nZbI56mkfG1JEjRxgaGmTNmgf55JNPsFqTycvL59133+Hpp59Bp9PhcNjR6SJjJS7OzMiIE0GQYTKZGBlxMjLiio0tl8vFyMhIbGypVCo8Hg/j414MBgNmc8QmkykOmUzA4RhGpVLxu9/9ju9+96WrwvTI5ZHQYna7I/qZE/EuttlsqFTKaB9zEBdnRhCI9aEJ7+WJWMxWawoKhYKhoSEMBgM6nQ6/38/AwEBsHCYmJiKTyejshH/4hzvxLXH/U15eTmNjo/RUfB/wTdVOfzWaws8sdkk7SdpJ0k6SdpK0k6SdvhZI2unWEQRhBfDPoijOFQThDLBIFMVLgiCkAg2iKD4gCMIr0b/fib4ndt6Nyv2maCcgsoj17Xs/1yfx+QwMDHD69GkWL1mC+UeR15z/FPkdjO5Qntjl3NLSgiAITJ06Nfp5HGR4eJjGxkZWrlx5lRPM7cD840jIOOcPvlzeJb/fz9atW3n00UejOTTrWbBgAQ0NDSQlJfHAAw9cswP9bvNl6yiKIh988AHr1q1DLpdz4MABiouLOXbsGAkJCSQlJZGcnHwnTL4uX/VefZYrc2S1t7ejUCgYHR2NRo/Qkp+ff/UbBOGa/st9sNZwPY4ePUpcXNy1dfgmcx9+XwiCcFQUxfLrHpMWsu4e//IvkJ19e8pyuVxR77dy8vIKbvp9kUToO5k9ezZms+Wa44FAIBpD3YFaraGqag7Jydbb+oV4u3A6h6murqaqqors7Jy7em27fYjm5haWLFl6RfiUmycUCrFrVz2CIDBr1ixqa+vw+30YDEYWLlyAwWC86bJEUeTQoYMMDg7x4IOrkcuVt2zP/YLP52XLls3k5xfEPJXvJqdPn+bEieN861tr0el0X/yG+5RQKEBDw6fRSSYVc+ZUkpqa9qXGsSiK7N69m4KCAtLS0rhw4QKHDh1EEAQyM7OYNaviCs/wO0MoFKK2tga1Ws3ChYvu+eeRNBkjTcbcD3xTtdNz5wTeyvty2lXSTpJ2mkDSTrcPSTtdi6SdrkXSTpJ2uhUEQXgDaBJF8eeCIDhFUTRHXxeAYVEUzYIgbAF+LIri3uixOuBvRVFs/ExZfwr8KUBmZubMixcv3tW63DPuw4lJiWv5vIWs37z5Jna7nZycHPLz8zly5AhdXV3k5uaSkZHByZMnycnJYdeuXeTl5fHSSy/d1oWh272Q9e///u9UVFSwZ88e5s6dG9XV18+vdLe4XQtZb775JmazmaamJpYtW0ZaWhoFBTf/rPFVuZMLWZ9++iltbW243W7KysrQaDTMnTv36jdIC1lfb+7D74vPW8iSQgt+TTEajTz11FO3/FAiCAIrVqy84XGlUsmKFSuiXpiXQ5rcj8TFmXn66WfuiX3x8YksXbrsS19bJpOxZMlSIvkxBB555JFYm3+ZMmfPrgTu33t1s6hUah599LF7Vo+ioiKKioruybVvJ3K5kiVLlt62cTyRdBMgOzubrKysWJl3417JZDKWL19x164nISHxx4mknSTtdCWSdro9SNrp+kjaSULiyyEIggpYC/zws8dEURQFQbil2TZRFF8FXoWIE9BtMVJC4i7Q1dVFYWEhHo+H7du3U1xcTGFhIc3NzdHdyEpSUlIoKyuL7a6+1zucPg+ZTBbbhdzX14ff/0Ux574+TOxUUiqVOBwODAbDvTbptqLRaPD7/YyPj+N03p7FMgmJL4u0kHUXsVoj3mi3B4HrxXq/uffdqbLvNvfSzq963c/a/lXq8nW4VzfLve57Ultev5w7Ue6t2nD/3Bur9V5bICHxzeF62unLaylJO0na6XbZcj9xr/ue1JbXL+dOlHurNtw/90bSThK3wGoiu7EGov8PCP8/e/cdH8V1L/z/MzvbJO2uVgVUUEWiV5lmEGCBKAYbjJ3ENXYcB+KUe5Pn5jqPnSfO45Cb5/7sJDf3OjfFJbGT+EKMDTYuuFCMwYBpKjRRVUC9t92VtszO74+VFkmIJgmtynm/XrxWOztz5nvmzC7f3TNzjiTFdBhasKpteSkQ32G7uLZlgjBkVFdXs2TJEv8clhqNhtTUVPLy8tDpdFRXVzN69GjA19kwkE2bNo1Zs2bR2NhIZWVlj+7OH6hSUlKYPHkyOp0Om802pOo2cuRIRo0a5R8+vOP8pYIQCKIjqx+tWxfoCARBEARBEAaPrrnTz9YP3+GpBEEQBGEYeAj4R4fn7wPfAJ5ve3yvw/J/kiTpTWAO0Hit+bEEYaBqbm7udnlYWBjh4eGEhYWxbNky//JZs2bR1NREfX09MTExxMf7+nMVRaGmpqbP4mqfhqanZbpcLpqamvzbz5w5k6amJqZMmUJ5eTlut7tP4+2JntZRVVWam5upra1Fo9Ewfvx4FEVh8uTJfPLJJ0yePLlf69bbtuqqqamJ2lrffMCRkZEAhIaGUlRURHx8/BX7ieymjEC37dU0NjZisVgCHYbQC6IjawBRVRWv14skSTQ0NGAymdDr9d2u29jYiE6n69FY9KqqUlNTQ3h4OLIs+5c3NzcjSVK3t8F6PB4aGhqIiIjo1fAUNxK30+n0T8TdU5cnzw7xTzbcUUtLC06n85pj8l7tOF2NzWZDVVXM5qvP0eD1etsmZo/wX6WhqiqKoiDLsv/YNjc3o9FoCAkJue5+27ndbhobG2+6jW62njeipaUFl8tFaGjodfddV1eHxWJBkiQqKioIDQ294hg6nU7sdjthYWG9Hh6lvb4d26C7c87r9QLc0NU03R3D7tq1tzH3ZRsJgiAMBSJ38hG5k8idRO50/fIFQRjYJEkKAZYCT3ZY/DzwliRJ3wIuAve3Lf8IWAlcABzAN/sxVEHoM5cuXep2+T//4AdX3ebBWxVMB9IzvsfIESN6XMY3rrL8Wz0usW/1po5PXGX51ep8K/VFW3V0tfPr3pso49ixY30RSp/Lz8/3d/4Kg5PoyOpHr74KlZVXf11V4fDho4wenUx2dhZTpkwjNja223X37TtOVFQUY8aMvek43G4P7733OXfddRdBQZd/FMnKOoNOp2fq1GlXbFNf38zevftYtWo1Gk3Pv1ju33+SyMgIxo0bf9V1SkuryMvLY+nSq89HcT2qCtu3H2LKlCnExsZd8XpBQRnFxZe4445FVy1DURS2bt3DnXcuJyTk+hOIHzt2AY9HYcaMGVddx+l08f77n7NmzWp0Ot+PRHV1dZw7d445c26n/Tv74cOnCQ4OYvLkKdfdb7va2ib279/P3Xevuqk2utl63ojz50uorKxg/vwF11xPVeGjjw4we/Yc6uvrycvLY/bs2cTGdo6jrKyaEydOsmzZcno7zL/b7Wbr1s9ZtepujEbfGNIlJVWcOXOGJUuW+tc7ffoMBoOB0aNTrltm+zFcvny5f7J5u91OVlYW6enpvZ7QW1E8bN36OXfeuYKQkCt/LI2KEnd8CoIwNHWXO/3yl5f/FrmTj8idRO4kcqeu5YvcSRAGG1VV7UBEl2W1QGY366rA9/sptMFp48AZXlToXhTwT+GBjkIQ+l5m5ZJAh9CtTBNwpO3fzZBkeMhzCyISbpboyOpHBQV2oqMdVFRUER0djclkoqXFQWioldbWVjweNxkZSZjNIeTlVWE212Kz1ZKUlIReb6CmphpVVTGZTJjNtYSEyNjtLkaNGkVoqBWbzUZhYSGhoaFYrVY8Hg/h4eEoiofmZhtms4mLFy8BXmS5hNhYF3Z7A6rqJTg4BKu1AdDgcOQRFTWC8PBIWltbKSwsRK9X0enKSEz0UlJSTEuLg5SUVOrq6vB43Gi1WgwGA0FBQej1BhoaGjAajdjtNhobm5BlDQkJiZw4UYvJpGK3nyI2Nhar1YokSaiqit1u4+LFixgMLQQFVWG11hMSYkKr1VJXV4der6OpqQmAsDBfvQoKCklMTCAoKAibrZmamjpMphBiY0dhNFZhNtdhs9WTmJiEyWTCZmvm4sWLGI1NhITUYLHUYbGY0Whk6uvr0Wq12GzNgMSIEVZ0ujJCQmqw2y+RmppCa6sTo9GAXm+gsbGB4OAQ7HY7paUlGI0V6HR6QkPrcTjsSJIGs9mEJEmEhJiw2Wx4PB602hIMhkocDjspKanExJiIjk4gJgbq6mqoqKjAYCgnPDySmJhWLly4QFhYODExMZ2uTm1sbOwUi1brQKstRZYvoSheEhMT/Veger1eqqurqKysIiVlNA5HC+Hh4bS2tuD1eq+op15voKqqkqqqKsLDIxgxYoT/XEhISECj0aDVajEaDTQ0NAIqVmsokiRTX19HeHgTTU0VOJ1nsVgsREdH43A4yM/PZ9SoWMLCwikrK8Vut6PVljJypIO8vIOkpSUyY0YEBoPvSlqHw05RUREGQyvBwVWEhfmOuU6na5vgVNvpnAgODsbjcdPY2EBYWAQ2mw2v13dlr9lswW634Xa70elKCAqqwm63k5qaisvVQkFBOYpyHr3eyKhRo7BaYwBQlBrMZguq6qW1tRWLJRRJkvB43BS1TdSSkJDY4RheJDU1Fa3WSGjoaEymZoKCgtHr9dTX16PRSMiyluDgYBoaGrBarciy3HbrfWNbW+qIj09AVRUuXSrB6/UgyyVERbWg0ymEhoZit9sBlZAQUx/OvScIgjCwdM2daACrtV7kTiJ3ErmTyJ1E7iQIgnAtD6uBjkC4jsrKSvLy8ljE4iteO3zoEDNmzAjcXcXPt92Brzb0aHOXy8W2bdu49957UVWVV155hccee4y//vWvzJkzh/Hjx/dolIQ+1cM6qqrK5s2bue+++5BlmbfeeosFCxawfft2pk6dSkxMjO97S3/pZVt19dFHHzF//nwsFgsHDhxAr9dTV1eHyWQiIiKCcePGdd6guyumBujnT1ZWFqGhoaSmpt7chuLCgAFD/vnPfx7oGHjllVd+/u1vfzvQYdxyL76YxWefvYvRGMQXX+wlISGRDz74gKlTp/D557tpaWnh+PETGI0GLl68RFFRIW63h9zcXMaOHcPx4yf47LPPAGhtbeX48ePodHr279/PxIkTeeeddzCbzXz44QeMHDmS7du3M27cWC5cyOfYsWM0NDRy8uQJamtryc/PZ86c2zlz5gx7936BzWZDlmWOHDlCWFgYu3Z9xrhxY/n000+w2eycOXOa1tYWYmJi2L9/PyEhIYSEhHDpUhFZWTnk5ubicrVSXV1LVNRINmzYQEREJC+//BJGo4GDBw8RHR1FZWUVx4/nYjZb2L37MyZNmoRer0dRPLz55ptIkoacnBz/j09utxuTKYRNm94kPj6eU6dOsW3bNhITE9m5cydWaxitrU4aGxv585//gslkYu/evYwdm8qZM2cpKChEp9Nx4MB+xo8fz6ZNb6LTaTl6NAuLxcLFi0XodDp0Oi1vv/02cXFxbfv4kLFjx5GTk01jYxNVVVWUlZXT0NBASUkpMTExbNjwP8THx7NlyxaMRiOHDh0iLi4eWZY5ceIk27d/SkREJEeOHGb8+PFs2bKF0FALhw4dxutVuHAhH5fLidls4oMPPiAlZTRvvrmprayDpKSkcPr0adxuN06nk+joqE5DtRw+fJiyslKio9tjSeDzz3djNps5diwXnU7n/8+zqKiITz/9BL1eT2NjEzk5OXg8Hvbs2UNcXDxZWUc71dNsNrN9+w70eh0ff/wRY8aksmXLOwQHB1NWVoJGo+Gzzz7D4Wjh4sWLnDp1iuDgYCRJwzvvvEN0dBR7935BRERE2z7i2LFjOyEhIbS0tOJw2Ni5cyeK4iUnJ5epU6eRm+uLafTo0RiNQXi9Ht588y1UFXJzffU0Ab6UAAAgAElEQVSpra3D6WzFYjHzj39sJCEhgVOn8ti2bRtJSUmEh4fjdnvYvNnXJjt37iAkxMQXX+xj4sSJvP/+BwQFGcnJycXlclFbW01R0UUiIiLYtWsXFouFvXv3Mnp0CmfPnqGsrIzq6moKCgo4ffoMWq2OEW23a+/atYuSklIaGhqwWMxkZ2fR2NhIVVU1paVlxMXFs2nTm9jtDpqamoiIiGDjxg2MGDGCTz/djqqqnD6dx5gxY9BoNJSVlfKHP/yBoKBgDhz4kvj4OM6fv0Bubg4NDQ2cPXuOsWPHsHv3Z0yePImPP/7YH09DAyxc2P+facLw88orr/Dtb397faDjEIZv7lSS+jEtH48RuZPInUTuJHInkTsJg4LInQaO4ZI7AXBiPUz5eaCjEK7DbrdTXV1N8t/+xvNtN7w/s9v3uHX6dNLS0gLWkfX8vud98cx/pkfbK4rC+fPnmTBhAgBbt27lxIkTFBQUoNVqSUhIuKnhoG+F3tQxLy+PCRMmoNFoOHDgAHv37uXkyZNERflyz5iYmL4O96p621ZdnT9/noSEBAwGA/n5+WzZsoVTp04RHx9PZWUl48d3GSVi/forzl8GQF9Dd8rLyzEajYSH3+StkEP5M3UA1m39+vXlP//5z1/p7rXrD2Au9BmvV2XevHltEzVKbXM4qJSUlFBUVERKSgoejwdF8SLLGjIzl7B06VLq6mrR6XRMmjQJs9nC7NlzkCSJBQsWsnz5UlwuN01NTdhsNpKSkrBarcTHxzNqVCxnzpzl1KmTTJw4gby8k2RmLuHuu+8iPDwco9HAtGlTMRr1LFgwH0mCuXNvJyMjg6ioKC5cuEBFRQVLly5l5cq72n600GGzNaOqXkwmE1OnTsfrVVix4k4mT57KiRPHuXSpmNDQUIKDg4iLi2PFipVMnDiBkpISJAnmz1/AokWLsFgsVFRUANDQ0IDL5Wbx4sUsW7YUWdYwZcoUcnKyyc8vIDo6hri4eEaNGsWECRNJSEhEr9dTVlbKyJEj8Xq9jB8/jjvvvJOYmFgqK6vQaDRkZmaSmZmJy+XmwoULyLKWxYuXkJm5GI1GYvLkyWRn53D27DmSkhJJSEhgxIgRpKWlERMTg9Fo5M4772Tx4kUUF19iwoTxnDp1ipKSEkJCQmhoqGfkyBEsXryYuXPnIUkSY8aMQa/XkZmZycSJE6ioqKCiogKbrZno6BisVisrVqxgwYIFFBYW4fWquN0eCguLSExMYPHixcyaNRsAozGI0tJSwsMjkKTOb9dJkya0xVKMyWTCZDIRH5/AkiVLWLBgIadOnfRP+njsWC4zZsxk8eJMZs6cSUbGHbz11ltER8cwcmTkFfVsampEr/dd2RoZGUFNTS2RkeFkZGSwaFEmqalj8HgU9u7dw7x585gyZSpZWTmcOXOG0aOT0Wq1TJs2lUWLFjFx4nguXLiAwWCktLSEkSNHcvz4SebOncuyZcsYPTqZkJBgEhMTue2227Baw9rOiUZaW1vIzMxk2bJlaDQyU6ZMITc3l4KCAqKjo4mLiyc+Po4JE8aTlJQEgF6vZ/78+fz1r68zefJkxo0bR0NDPRUVFdTU1BAXF4/JZOLOO5ezdOlyCgsLURSFcePGsWzZchITk6isrERRvHi9KrNnzyE7O4uGhnrGjx/XdkWxh9OnT7NkSSYrV64kKiqqwzFcTHHxJVTVi9vtZvLkSRw/foyLF4sID48gNXUMJpOJbdu2sWDBwg5XfqskJiaxYsUKxo4dS2lpKSdOnGDRosWsWLGSkSNHEhUVjd1up7y8nPLyChITE2/9B5cgCEIAdc2dfETuBCJ3ErmTyJ1E7iQIgiAMVYqiBDqEPhUdHc13v/tdRo8ePeTqFhwczBNPPMHs2bPxer3+XHIokGWZr33ta6xcuRIYeuelMPiIjqx+ptXq/H9rNDBhwkR27foMq9WKxdJxcmcJnU7rHw5FURR27NhBevo8goJ8Y9PrdJfL8noVFMXDoUMHSU+fT2hoKFOmTOHIkcM0N9uIj09Ao9HS0uJo+8FHwev1smvXLm67baZ/bHqn04nXq+Bw2NHpdCiKF7fbhcvlRFVVoqOjeOCBBzh79hy5uTlkZ2djsYSSkJBIZGQ4ILF3717S0tKQJN8wIBqNxj8EDkBrqxOv14PD4fB/EdVoZFwuJ4qi4HQ6UVWIjo7BZrNx+PBhbrstDYfDzr59+8jIyECn07FmzRoSEhJ56623UBQvWq0OSZLa9gWg4nQ68XjcuFxO9Ho9ra2tKIoHp9MJ+IY1qampJjc3l+nTp9PU1Mjhw0dYsGAhGg1IkgatVgZ88YeFWdHrtezZs4fp06ej1+txOHxDzLhcLgBKSkooKytn+vQ09HqD/4pa37AzemRZ0zaJNaiqt8O5ocVms3cqa+HCBaSnp/POO1tobm7udC5ZrWFotVr27NnL9OlpaDS+IVsUxYvN1txpbgGdTkdra2tb2U5qa31Xf1dVVeLxKFfUs33y87y8PFasWIlOp8PpdOP1enE6nW3H1YVWq6OhoZ6kpEQqKio4ceK4f54Qp9OF16vQ3GxDr9dz1113MX78BDZtehNJap/g3YvL5e72veIbMsaNx+PpcP5FY7c7OHToEGlpaTgcDvbu3UtGRgYazeUrlaqrq4mOjqGsrBxZlklOHs2OHdv9V5V4vQput4eWFgeqqiJJl99vXdulqamJ4OBgbDYbra2tvnen5JvI3OVy+d9PGk17u7affz6RkSPweDzs37+P225Lw+PxnfshIcHU1NR0SnLat/fFoKLVamlpsaMonrahlWTGjBnDzp07iY2NCfyt+IIgCP2gY+4EIncSuZPInUTuJHInQRAEYegL2LCCt8B9991HUFAQ99xzDw6HA4PBEOiQ+szSpUsZMWIEK1euxOFwYDb3zfypA8HUqVOZNGkSc+fORafTYbVaAx2SMMyJObL6kV5vwGDw/VhgsZiRJJmJEyewd+8ebr99daehT0ymkLYfMiTMZgu1tbWUlBSj1WpxOl0EB4eg1+sAX1myLOPxKDgcDg4dOojZbCI2dhSSpGH06CT0ej0zZ87kk08+wWKxIEkSTU3NXLiQj8fj+6JnMBg5ceIotbW1KIqXcePGUVpaxubNm1EUL0FBwVy6VMLhw4doaXEQERHBjh07MZlC2LlzJ5mZi5g+fTr79u0jPj6B5uYmzGbf5MpGYxA6nY6goCCOHz9OSUkxQUHBxMaOAiA0NJQRI0by9ttvYbPZiIwcgV6vZ+LESeTlnSIqKpqTJ0/icLSwe/dnzJw5k2PHjtPc3ERcXBx6vZ6QEN8X05CQYHQ6HcHBIRw4cIDs7Gzi4xNISUkhK+sob731Ng0NvrkfjEYjqaljKCkpITIygkOHjuByOdm5cztz56a3zQGhQavVYDb72iwtbQa7du0iOTkZWZZxOlvZvPltysvLmT17NkePHsXtdvPxxx+xZMkSbrttBm+88XeWL7/T354godVqMZkuTz49enQyBw7sZ/PmtykpKSEhIY59+/ZRWVlJeHgERmPn/+hlWUtaWhq7d+8mKSkJh8NBS0sL77yzhZqaGlavvsf/Y97MmTPZvHkzBQWFxMfHUVhYxKOPfp2dOz+jpKT4inrqdDrsdgfNzc3s2LGDu+9eRUtLC2+++SZWayhhYWGMHTuOkSNHcvDgIdasWcPo0clUVlYRHh5GVVUVpaWlvP3229TXN3DHHRns3LmDhoYGYmNHMWPGTN57bytFRUX+oZmCg4M7/VhpNvvmh9i8+W1sNjsREeFtV9dP5MSJk0RHx3D6dB52u4Pduz9nzpzbiY+Pp7m5mfPnz/Gtbz3B1q3vUVtby/Tp03nttb+weHFm2w8verZt24bDYef22+dgNBr9t7UHBQWh0+kBUFWFL788wMqVKyguLuHYsePMnTsXWdYye/YsNm/ejMlkIiMjA7PZN1+ILCv+897XTjJTp07j8OFDxMXFcfp0HtHR0WRk3MGBA1+SlJSILGs7nQ9BQUEYDEZmzpzJ9u07CQ0Nxev1IkkSU6dO4+DBQyxYsLDTvB+CIAhDUdfcCRC5k8id/G0ucieRO4ncSRAEQRjMcnNzWdTN8tDQUD799NN+j6edx+MBfPMl9XT77OzsKzqsFEXBaDSyf//+XsfYW72pY05OTtsQ0ZfzClVVaWlp4ezZs1y4cKHP4rye3rZVV0ePHqWlpcV/IWC7yspKrFbrFftZ2U0ZfRVLXyssLGwb6UMYrKSBcMvjzJkz1aNHjwY6jFvuuedcJCf7rrR1uZzodHokSaK1tbXt6lQ7b721iRUrVhIREYFWq0Wj8X3Z910V6gR8VxpKkgZZltBofGWVlJTy+eefceedK8nJycZqtZKePh+Xy4ksy2i1OrxeL62tLf4ffbqWqdHIeL1ePB4Per0erVaL1+uhtdWJVuvr89RqtbS2OpEkCaPRSGtrK6rqRZI0BAUFtV2t6cZgMLaV5UavN/g/WFVVRVXVth9/9Mjy5SunPR7ffAa+L+QqBoMRRXHj8Sj+Mlwu39XABoMBt9uD16v4f6TweLwYDIa2MjR4PArgG8rEaDQgy1rcbt8Vxu1f+g0GQ9uVuL59uN1u3G7fFb1GowGPR0Gn07fF7KuL16vgcrkxGo0A/itLtVq57RgqbfX1HaP2Nm7/2+lsbTs+Ck6ni3PnznL27Fnuv/8BXC4nHo+CVisjyzKK4juGOp0enU53xZdvRfH4Y2k/3l6viiSBwWD0r6+qqr9so1GP2+1pO74evF4VVfV2queuXbswGPSMHz+BDz/8kDVr1hAeHoHL5cRgMKAoiv889C0z4vH42qNjuymKgixr0ev1OJ2tKIqCweBrC9+5oyLLGrRaXdsx1CDLl3+Q6XpO+I6/xx9/13NCq9X5r8Btb09ZlpAk+Yo2kCSpLYkKQlW9/h8knU4nbreLTz75hDFjxjJu3Fj0eoN/Hb3egCRJnd5PBoPR/572HWsXZWUlfP755zz++BOA1x+zy+VCq9Wg0Wj950J7LO3nmNvtRqOR0GjkTu/Z9n23f2a0X6FVVATPPtvrjyhBuK6ZM2dy9OhR8SvgADDccqffV91PVstW//LfRzZgMplE7jTEc6f/XTGaRrWyQ7vXo9PpRe40hHOnX7bMwBN0+U66P45santvidxJGJxE7jRwDJfcCYCNEjwc+N/6hGurrKwkOzubFStXYv2Fb1nD/w1sTO2sbdMtNTwf2DhupaFSx4FQj67nb1NjY+CCuYZjx44RExNDamrqzW04lD9TB2DdJEnKUlV1ZneviTuy+pFOp6ftNw0MBqN/eXsvd0VFpf9KzY5XVxqNvtdDQrpvLoPBSHx8PJMnT+HEieOMGDGC6dN9w9N03I9GoyE4uPNkit2V2fGKCVnWERLSeUifjtt0HZ5DlrX+YVlkWfZ/Wew4lE/XfbTTanVXDB8kyzr/l/P2eSY6rt953c5lt2/XcV9dy+i6X71e3zZ3GZ3KaK9Pex2Dgi4fA4PB0KU+OrpWr+Nxam9P31Xjbmpra1iwYIG/vTpuq9V2f6wux3Q5lo7Hu6uuZbfXq+sxbC8nPT2do0ezOHnyJBkZGYwYMRKNRuM/dt2dn77XdP7yOx67juu163p1R3ex3+w54Xv98jnYsS27a4PLNP5tDAYDtbW1hIVZGTNmTId1L68DV76fOr7XdDotJSVlZGQsahseSu72fOwYR8f26xz3lROgdj12giAIQ1V77vRI5Iv8L/27PJrv+y3wd82r+FnoXpE7DfHc6Z9HbmGcKR2AR/MlnqpJ5L9HVYjcqcN+uxrsudMjca+SOfp+JEni0XyJH1XF8WrK5R9DRO4kCIJwgzaK/tOBLgpYEeggBOEWsHwYCpIMD3kCHUonYojpwU90ZPWjqCjf1X9Xo9ONIT5+DCUlPSldT1TU7URF+Z6Vl/ekDKH/BZGSshSX69rnRv+zkpKS6X926VIAQwmIWFJSYqmq6un2OhIT7wDg4sU+C+qq2t/3giAIQ83l3CkBe4flic7VFBWJ3GmoM5BOUc3l53EsoKJC5E4D063JneJYcEvaWeROgiAMeQPsCnvhSpWVleTl5bGIxVe89uknn5CZmem/w7/fPd82F5La0KPNXS4X27Zt495770VVVX71q1+RmZnJxx9/zMKFC0lLS8NisfRhwD3QwzqqqsrmzZu57777kGWZc+fOcebMGVavXn0LgrwBvWyrrj766CPmz5+PxWJhz549lJWV0djYyPjx4wkJCWHWrFmdN+hu2OaHVdGZLtwSoiOrH61bF+gIBEEQBEEQBo+OuVPcb+OgbcSxP//z/SSEByYmoX/J62W8eAH462M/IT05wAEJt5xoc0EQBGG4O3v2LIsWdTd71uDkdrspLy+ntbWVgoICJkyYEPiOrD4wEKbrudWqq6ux2WzYbDZqa2uv7MgShH6kuf4qgiAIgiAIghBYJT/y3XYlITHntTkBjkboL8pzCupzvh8JFvx9QYCjEfqDaHNBEARhuJMk6Yp5PgezCRMmsGzZMqZPnz6k6ubxeMjOziYxMTHQodwSVquVJUuWsHjxYoKCgvxzkApCoIg7sgRBEARBEIQBLa8yj4lREwFfR1awToxvPhy8f/p9Vk+4PEyLRhJfnoc60eaCIAjCcOJyubpdbrVacblcuN3ufo6oM4fD0aPt3G43TqfTv/3y5ctRFIWMjAzee+89dDpdj8vuaz2Jw+Vy0dLSgkaj4a677kKW5YDXp6/23143rVZLamqqf/nu3btJSkq6Yj/dfStzOBwE92FMfaW1tZXQ0NBAhyH0gujIEgRBEARBEAa0pRuWUtZcBoAXL8e+eyzAEQn9Yc1ba1C5PGRL+115wtAl2lwQBEEYTk6ePMnybpY/+thj8Nhj/R6P3zO+h+CQkB4X8WA3y4KBtTAw5l7pRR0f6cVuP3j//V5sfaX2zs5du3b1SXm5ubk4nU6Cgzt3UamqSnFxMSVdJide1U0Zu3btYlUfxtRXCgsLWbFiRaDDEHpBdGQJgiAIgiAIA1rpj0oBkNZL/iHHhKHP+5w30CEI/Uy0uSAIQh/ZODSGbhvKooB/jQl0FEJ/W9W8+sqFkgwPeXpUnu6Uzlfuqu66lG6eLMvMnz8fi8WCqqq0tLTg8XgwmUxcunQJrVZLdHQ0sixjt9u7LWPVqlWwse9i6itZWVlDZljL4Up0ZAmCIAiCIAgDQnQ0VFZeft7cDCZT4OIRBEEQBEEYlB4WF/4MdJWVleTl5bGIxVe+qAa4/Z63tsXR0KPNXS4X27Zt495770VVVTZv3gxAUlISs2bN6qsoe6eHdWyvz3333Ycsy2zatAmPx4PD4eCxxx7DYDB0v2F7B0p3780B2vGcn5/P9u3bSUhIICUlhXfeeYfQ0FAWLlxISkoKeXl5zA50kMKwIjqy+kljYyMvvvhioMMQ+pndbhcTIg4ziqJ0exu2MLS5XC7WrVs3ZCd5FYT+smULpKf7/pYklYiIFn760990WucXv/hFACIT+ovInYYfkTsNTyJ3EgRBGB6cTieXLl3iX/7lX4bk3TBut5vMzEx27dpFdXU1cXFxgQ6pzxw4cIBFixaRl5dHTU0NTqcTp9NJbm4ux48fx263i44soV+Jjqx+4nA4cDqd/OAHPwh0KEI/+v3vf88999xDbGxsoEMR+klxcTEffvghTz75ZKBDEfrRpk2bqKqqEj/GCEIvtXditYuLy/d/nkbftRkq9/NcVA4V274agOiE/tA1d4q+/4/QGgHGWire+l6AoxNuha65U/R3fgRRp6ByEhUv/TbA0Qm3isidBEEQhgetVovX66WgoACj0TikOnrAd4dWeXk5DQ0NmM3mQIfTp2JiYjh9+jSSJFFXV0dycjIAd9xxBx9//DEulyvAEQrDjejI6kdBQUFERUUFOgyhH5lMJiIjI0W7DyMOhwOTyXRDba62DRcwFK9KGm4sFkugQxCEIUOWwds2Tc4ddxwkKmod0sw/QFZbJ0bJXKLv+iPq0e8HLkjhlumYO0l3PAcHngZFD7KL6PtfQN2zPtAhCn2sY+4k3fsITNvoeyH6GNHfAfXdDf51Re40dIjcSRAEYXiQZZlHH32U06dPk5qaGuhw+tzcuXMpLi7m3nvvHXL/t2VkZJCdnU1LSwuTJ0+mubkZgMjISObPn8+uXbsCHKEw3IiOrAAqLi7mhRdqqa/XI0mg1xtITExEln3NoigevF4VnU7XaTuv14uiuNFq9f4vcVFRsG5dv1dB6IHf/c7BmTP1xMTE4vV6KS8vIyYmGlnWiXYcol59FcrKFGpqqqmvr0Or1REfH09DQz0VFRVMm5Z2xTbiXBAEYbhSFN+jJMHrrz/Ba68Ble2fk20/Xmd9H/E79lD1NM880/53h04rjxb2rhftPiQlA0/x4x8DX6/xLZIAFYg6xde/nnfd3EnkTYIgCMJgdObMGRZ1s3zv3r39HktHHo+nV3F4PB7y8vKIiIjwL5NlmcLCQgoLC/skxt7qTR1Pnz7Nvn37/L/JyrJMfn4++fn5V91mYdtjd/tb2MM4oPdt1dWpU6fQaDSdhnzWaDTk5eX5nxcXF2Oz2QgLC+u2jL179/aqTrfKhQsXWLBgQaDDEHpBdGQFkCRJNDYGcerU+6SlTWfUqHiSklTAg8fjoaioiPz8ApYvX44kSaiqisfjxmZr5pNPtvPgg/ej0WiRJImiokDXRrhR5883cfr0x8yd+y3cboUPP9zC2rXrCAnRiXYcoioqVCorD3Ly5ClmzEijtdVFS4sNs1nPxYvniYmZgCzLyLLWnwiJc0EQhOHo/fdh9erLzyWpbTLkqBwomYvvl21gxh95fMpY4uLiSU1NAaQe5U7PPtvPFRSu64UXXuDhhx8mPj6+wx1ZOpDdMO8F/vKNn/KnP/2xLXcKEe04BBQWFrJlyxaeeuoppHsjO79YOZERSfbr5k4ibxIEQRAGo+jo6G6XL7zjjn6OpDPtM72PY3EfxQJQVlrah6X5yPtlgB7dJXbmzBlSUlJ6NKdrt/sr6Vkc0Lt6dKe4uJjRo0djMpl6XEZqamqv6nSrtLa2BjoEoZdER1YAxcXFMXasSmlpBGPHjiM+PoHdu3dTWFhIaGgoDoedgoICLBYzVquVgwcPYjAYiIiI4Pjx44SFWVm2bBlare76OxMGFLfbTVNTEx6PB49HCXQ4wi3mdLby5ZcH+da3nmgbM1kFNJw9e4b8/Hw2bXoLt9vNQw89JCY6FwRhWFuzBtpGDgPgqaeeB55FPfp93/CCDSlgzWeRJUjkTsOAume9rzNL5wK3nt/f/yOam5tF7jSEqe9uQLoXmL4Rjj3Ef2f+QeROgiAIwpBltVoDHcKgcCvmnW+/iPhmy1ZVlbCwMGJiYpBlmcbGRkpKSqivryc9PZ3z58+j1WpJTk5m7969zJ49G6PR6N/+avvraR17Wo+rCQsLIzo6GovFQkVFBRqNBqfTiaIoaDQaEhISrltGeyy3ot16o7y8XAxPPciJjqwBpqqqkri4OBYvXsSpU3no9Qbmzr2dgwcPo9Vquf/+B6ivr6OwsIglS5b6hyEUBpf8/AL++te/oqpe6urqAh2OcIu1trZiMOgxm03s27ePwsJCYmNHERc3itDQUO6//2ts3ryZ0tJSxowZE+hwBUEQAqZ9biyA8vIK/vKXy8/Vo99HWi/x99FeXn/9df9ykTsNbeqe9UjrJaJfekrkTsOE+u4GpPUbmVM+V+ROgiAIwrC05/PPyc7OJiwsjBkzZjB58uT+/QH++bYONrWhR5u7XC62bdvGvffei6qq/PrXvyY2Npbk5GTS09NvvKBB0OlQWVnJoUOHOHfuHMXFxf4L6KZOnUpeXh4XLlxg3rx5TAh0oD1w7tw5mpqaaGhoICEhgdDQ0BvqyBKEW+Xm74EUbjGJuLg4tFodsqxp++e7anjUqDgMBgMajYxGo0Gr1Yqe5EFq7NixfP/73+PJJ7/DiBGR199AGNSMRiNOZytNTTbmz5/PggXzKS8vB3yTZBqNQej1BlwuV4AjFQRBGIxE7jQciNxp+BG5kyAIgjBcHTt2DI1GQ3p6Onv27Al0OL3W0tJCY2MjtbW1gQ6lT6kdhpIYNWoUqqq2zeU5jXPnzuF2u5kzZw5ffvllAKPsOa/Xy7Fjxzh9+jRNTU1cuHAh0CEJw5y4JHUA6PiDSse/zWYztbW1FBV1ngjRaDTidrs5d+4sY8aMRZblfotV6BsajYQsa/F6VfGD2jBgMBiZMWMmGzb8D3PnzqOkpASdzvcja3v7S5I0GC42EgRBGBBE7jT8iNxp+BG5kyAIgjCcGY1G9uzZM+CGZ+uJiIgIzGYzQUFBgQ6lT3k8HrKzsxk1ahR2u52QkBDsdjvHjx/HYDAwatQowsPDsVgsgQ61R0wmE6tWraK+vh6n0ykuIBICTnRkDQCLFy8iIiICgPT0ef4PuLi4eDIyMlAUL+PHj/PPB2A2m1m9ehUOhyNgMQs9FxoaSmZmJgCyLHP33XdhNOoDHJVwK0mSxIIFC0hOTqampoakpCSSk5MB3/kAMG/eXMzmwZncCIIg9DeROw0/IncafkTuJAiCIAx13o7jandgNpt54IEH8Hq96PV6FCUw84N6PJ4ebacoCoqi+Lf/5je/idfrxWg03lSZ7T9a9zSOG9GTsr1er3/OqLvvvhu9Xo/X60WSJFRVxePxoNX6ovflrndfc3/aHsbRUV8do/a6eTwepk6dCvjuPNu1axdJSUlX7Ke7jgWPx9MndeprgXofCX1HdGQFmCRJJCYm+Z+PGhXn/1uWZcaNG9/tNklJyf0RnnALGI1B/vaTZZmUFDGu/3Agy1oSE5M6vd8B/4+vHd/7giAIw1V0NFRW+p/x9NNXriNyp+FJ5E7Dj8idBEEQhKHuyJEjZHaz/JtPPAFPPNGjMje//XbvggLcbjcAW7du7SWRr2oAACAASURBVNH27Xcq9dZX2x57Gse19KaOhw8fRqPR3NQoAdeqy1d7GAf0vq26ysnJob6+/oq75xRFweFwUFBQ0Gn5V7nS1q1be1WnW+XSpUusWrUq0GEIvSA6svrR2bNn2bBhQ6dlx45NpLS091cH19QEs2FDXq/LEfpWTk4OwcHBhIeH+5ddq81FOw5+1dXV5OTkdHqv9+R9Ls6FweXQoUNMmjQp0GEIwqC3ZQu0z/8sSfCb3/wvpkzpnDvt37+/T/YlPmcHpu5yJ7h6u4t2HPy6y53g5t7r4jwYfETuJAiCAHPmzOnzMr/yla/0uoy1L6ztVVlutxuDwcCaNWsAXyeILMsoioLX68XtdqPT6dDpdLjdbtxuN3q9Hq1WS3NzM2azuVN5fVGnrnpTR1VVue+++9BoNP67z3Q6nb9jq2sd2jubrrq/f/S8jr1tq66Cg4OZP39+p/i7a5Nr+cpXvtKrOt0q2dnZYojyQU50ZPUji8XiHxKjXUpKCLW1Yb0uOyXFdUXZQuCFh4cTHx/PyJEj/cuu1eaiHQc/o9FIfn5+p3bsyftcnAuDy5kzZwIdgiAMCe2dWO1iYs77PwvTv5cHto95yXSatbOW9Hpf4nN2YOqaO6U/9QUEP8NLjn2snfTAFeuLdhz8uuZO6f/vbzAbXrr0d9bG/uSGyhDnweAjcidBEIa7x2ffRrCtnpcNMPM3vmUPGnyPHlMwWq0Wr6Lg9LhBBaPegCRLqIqKqnpxeTwY9HpUVQVA02TzbRxr7bQfV0gwD/7wn64Ziy4omKSJE/3PrRW+uZByv9zeo7q5PW5K8nPI/TIYFZXPP/+c9Pnz2ffFF8TFJ1BdXUVkZCSJiYkUF5dQUV5GTGwscXFx7Nyxg3nz0gkNDUVu7zu5gTh0QRYmp8296VhvtmOj/Xi3b/vBBx9QX1+PwWDgq1/9KvX19bz77rs8/vjjOBwOQkJCOHnyJDOvs7/edrD0dQeNJEkoikJNTQ1btmzhG9/4Bh6PB4PBgCzL/r+722vH+UwFoS+Jjqx+FBMTw7x58zot6/K0l8b2ZWFCH/jiiy+YMWMG8fHx/mXXb3PRjoNZYWEhhYWFnd7rPX+fi3NhsDh37lygQxCEIUOWoX26gKVLjzJv3jqk6X+GY9/yr/Nn/oKau7YP9iY+ZweajrmTNO8FOPLPoOhBdvFn/hv1QDfjTYp2HNQ65k7SXU9C2hu+F9Le4M85oG57+QZLEufBYCJyJ0EQhjtLSxMvp47EWniRY23XPk+r8j1Wj7Kg0ch4vQoej4Lb47vDSa834HI5CQoKprGxAa2sJTgkGEmSsOS3dWRN7Dz07vPlldyfdu2LPU7V1TNp3Aj/84R4DQBpHZbdDJfHja06lLRxI1BVlUO76yg9fxCptYwwQzgGq0pzYyGl5ysINZnQRkBrQwEVznIiglqoLzuB1ZBMWvsN+jcQR87Z6h7F2lt2u50VK1awY8cOtmzZgsvlori4mBdffJHQ0FDGjx/PpUuX/B1Zg8mXX37JhQsXuHjxIhs2bGDy5MmUlJRQV1eHxWJhwoQJpAU6SGFYER1ZAfbqqyoXL7Zit9vQaGQsFjN2u4OqqipSUlKv6L2OioJ16wIUrNBrqqry2982YrOFIMs6vF4vNlszISEmZFkW7TtEvfqqSn6+DaPRiFaro7W1BfDNl9YdcR4IgjCctc/BK0nw+utP8NprQMVtba+25UXH1iIu8BuqnuaZZy7/7efRwpdPi3YfkpKBp/jxj4H5SSD7rgJH4wJzBb/8JSJ3EgRBEIaVEaUV113HcrUXTnQZatcDPPzItQtTAbnD82+2Pc6Ycd04uqMHFrf9LQHf7VEpHdxIHHVA802U2Z5v3mRyKQFf6/D8622Pj91wAVfZ3yM9THJ7WI+rWdnh7/lt/wRhoBAdWQGkqipZWSUcP/4+cXHxKIpCbGwMkZGRlJcfZPHiFCSp862YRUWBi1foG1u3fsmCBYlMnDiR5mYbO3b8g8cf/yYGgyzad4iqqICsrHdYunQJsbGjOHAgB5fLSUbGom7XF+eBIAjD1fvvw+rVl59LUtvQHdHZUJmG71s2MO0vfG3syE6504EDX/LII48gSdIVudOzz/ZbFYReeuGFF3j44Ye73JGlA9kNs/6bPz76XTZu3NiWOxlE+w4BhYWFbNmyhaeeegrpriLfHXiaFvDqoTmapCRE7iQIgiAMD/HXX+Wm1QHfuc46NmBCh+fFbY//fgviuVUK8V0bc6Py2x43XHOtgW8g1CP/+qsIQl8QHVkB5HK52L9/P/ffv5KkpCQAFMXDxYsXqa2t4d1330WWNaxYsQKDwRjYYIU+IUkSSUnJHDuWw4QJE8jPzycqKgq9Xh/o0IRbzO12tU0C6sHj8aAoCllZWSQlJWG1hnLw4CFuu+02goK6v9JYEARhOFizBjoMO89TTz0PPIuau9Y3vKAtDkwl/OIrmSJ3GgbUA0/7OrOCG8Bh5e/f/d8cO5YrcqchTN32MtJdwOxXIPtR/n3BT0XuJAiCIAxZbrcr0CEIQp/Lzc1letvjQFJQUEBamhgMcTATHVkB1NTUhMfjIS4ujiNHjlBcXExc3CgiIyOx2x2kp89jx44dFBUVMW7c+ECHK/SRxMREzp3bgcNhJy/vNPPmzRUTIA4DHo+HjRv/QXBwEDU1tSxcuACPx82RI4e57bYZnDx5gttvnx3oMAVBEAKqfW4sgPLyCv7yl8vP1dy1SOslZnzwW5E7DSPqgaeR1kvM/uh3IncaJtRtLyOtf4X0pukidxIEQRCGLEmjITg42PfECx9WQXodvGSCN2RoAHTARiBBBxfc8Di+m448wNMaWOv1reMFEoFEDfxa7rIjD/CHy09/0AibHFAZ02Gdqw0t+H+uXYff2+BHdeBKuPF63zI9HVrwOqMuDngDoR7PdH5qNBo7PQ4UU6dOJT7+Vtz2KPQX0ZEVQHq9Hq9XpbW1hUmTJmGxmPnii30sXpxBQkICUVHRhIZasdsdgQ5V6EMGg5Ho6GhOnjxJS4udUaPirr+RMOhptVruuWc10dHRHDp0GIBx48axYcNGdDo9U6ZMQaMRH8mCIAjXoyiKyJ2GIZE7DT8idxIEQRCGNAlCDAb/0wsKtALveqFJhkM6WOiGTMDlBiMQA7yh861foEA4UACMBtKAn3TojKpT4V+9sFuFPzRDuAzHgvupbjfJWgKbI8EgwV3V0NQh1Stww6IaKHaBTgPfs8B/hgYuVuH6xo8fD9ltj4LQh0TmH0AWi4WEhDjeeeddli5dis1mC3RIQj+QJImpU6ewYcNG5s+fj1Yr3obDgSSB2WzGag0jODgYl8uJxRJKSEgwR48eYd26b4urywVBEG7AmDFjRe40DIncafgRuZMgCIIwLEyZCFV5nGt7ehQYB9gnjqP02FlMQPa0sSw8do4SYLXbdwPVv8VEUFteixtfB5i/rDZP5p1DUVUesZh57uX/5NMDh+GO+fCbV+CzQ7Cxw9AHdfWQPvfy878u9D1m7b127K9ugJ/9F2Qd6XH1HS2t2JPms/jEYX7yi/8kccc+2P+u//XlM+5CG61S/unfeW/bbr774+fJ/MN/cPfyjM4Fna2GectvfMfPW32PakOPY+8zGyV4WL3+et0ZCPUYCDEIw4Im0AEMZ5IkMW/ePMaPH0dWVhaVlZUsXboEqzWMyZMnAzBmzBiio6MCHKnQ15KSkklPn0daWpr4Aj5MTJs2HZPJDEB8fBxJSYlIksSiRYu5/fbbCQ0VlxQJgiDciOXLl4vcaRgSudPwI3InQRAEYThp74xqUGB3E4TvPUuVA0JUMMtaggC7E3Y0waeN8M38WrRe311a5xzwGzv88HwBAHcdPc+HNR5eSk3CrJXR6/SsumN+p/3N/dYzaBc+gjnzMTa+v8O/PPfkGbJ+aWffj+0YY2ez9gc/879WV9/IxNvvQR45g5C429m197D/tXsf/SHJ0+/stI9ZmQ8ye8lD16z3h5/sISw0BI1Gw4HDx0mbMs7/WnVNHRcuVvDyb39G1IhIvv341xiTHMuvfvf6TRxZQRCGCnE5Y4DpdAbmzLn9iuUREZEATJgwob9DEvqBwWBg+fI7r7+iMCRIksTMmbP8z5OSkv1/JyYmkpiYGIiwBEEQBiWDQeROw5HInYYfkTsJgiAIw4Veq2Mqbo4BigvmmmC2JYg/lbdQ2gpbL5Zgc0NNK4wNgUQZmpyQa4fVZrAEwZ5myG10saWsls+a3aRa4NnCYrY7XLz+tW+w7u5lPPUN30RKVc2tLJkxgl1/eI5f/uVtnn/tPb713W8yOimeJWu+TYhFz50/j+Mh81oeXPdTpkwcww+/8xhrvv4DKmvqOX94K7X1DWSsXuevw/pnvsf0jIe5WFJGYlwsrU4nOScu8D9/+kW3df7Oj9bz6hvvo6ptU3SNmIFXhf1HTrJhyw72fPgKZWU1SMCSjMt3i00cn8KR7FO9PubJYcnXX2kQGAj1GAgxCMOD6MjqR9XV1eTk5HRaVlY2AnDfcBllZTpycqr7ODLhVikrK+PUqVPU1NR0WHb1NhftO/iVlZVRVlbW6b0u3udDX3FxMZMmTQp0GIIw6EVHQ2Wl/xlPPHFl7lRUVHhTZYrP1MGlu9wJrt7uon0Hv+5yJ7i597o4DwYfkTsJgiBcNiF8DPqiPABmBUGrBiQNhBuhpgU21DbR6IYEAwRpQQYWh2rZX+mhXoEWGeKD4ctmLyfPVbLAInNSUjDLGtZGh5O4ZiU/efl/mDXJd8GXXpZ4Y/2/oNFo+PfvP8Yf39/Nf/7p7zz24GpqG+yU7f+EmKgRAKS/+g9e/usWfvidxzicfZr1T3+b0UnxjE6K54F7lvA/mz8FYOqkcUSPsPJvv/oTf/7dv/Hr/34Ng17Lg19Z2W2dX/rtc7z02+eISF3Iy//xUxLiYsi890kai/aj0fgGEHv59U3Icuc78cOtZlqdrl4f85wnc66/0iAwEOoxEGIQhgfRkdWPqqqqyMrK6rTMZhvL0aNBN1yGxdJCVta5668oDAilpaWcOHGCkpIS/7Jrtblo38GvpqaGkpKSTu918T4f+i5evBjoEARhSNiyBdLTfX9LEvztb79k7txNAKz7zyCoOMvPog9wz5ixN1ym+EwdXLrmTuteckLDx/zM+hH3xM2+Yn3RvoNf19xp3T/Og/QMP1Nf4h7zV2+oDHEeDD4idxIEQejsK1FW/tLYwCUgBdjW1AIacHmhEjCqvs6t9jliKlUvsgSlKpiAJB3UaQAVbrcaON3o4P+lJPFfldU8etcKfv/W+2zZtQfkEEwGnb+zCMBqCqK4pIK8s/nIGsnfiQWQnBjL2Qu+z2ynW2HShFT/a+PHdL4T56H7lvO3Tdv4M/C3f3zI4vkzuq1rQVExY2atAcCrwgNr/w9q2xRRuqhZfHVVBpte+w/CrFYUpfPcUQ2NzRgN+ps8uoIgDAWiI6sfTZo0ibVr13Za1uXpDVrYJ/EIt15tbS0PPvgg8fHx/mXXb3PRvoNZYWEhWq2203tdvM+HPq1W/HcqCH2hvROrXXJyCWvXrkWatAHyHvYtrBvDe2xEPfXITZQsPlMHi465kzTzD5D1Pf9r7/FH1KPf72Yr0b6DWcfcScp8GvY+B4oeZBfvLVyPuuuFGyxJnAeDicidhK4kSbICfwYm4xtp7AngLLAJSAKKgPtVVa2XfJMlvgisBBzA46qqZgcgbEHoM8tGxaI518Asg543p6fydkU1P7pYTZgGRgLBRh1HXG7Wx0byQPRIHjp5Dq/q5Y1xCUwLNTH1UB5eFUbIEjkNbugypWjHKUZtTjder9ffmdVgayE+LpqJ41JQvCrlldX+zqyiS2WEWy0A6HUyp05f4O7lGQCcyy/qtI+f/fg7/Ncrm3j/488ouFTBxlf+v27rOjopHqU6i3999lfs3HOIY19sIXHqcn745EP86PuP+9dbtGAWKrBr70EyF/qGFj95poDkxNgeHWNBEAY3kT0GkKqqvPyyh8pKDbIsoygeQEWWdd2uHxUF69Z1+5IwiLzyipfSUjeq6mtrWZapra3FaNQTEuKb0FpVVVpbW9Dr9VRXVxMREY5OZ+hUjjgfBo9XXlHIza0gKmrkVd/f7US7CoIw3MkyeL2+vxcs2AdMgNL2cfHbvoHnPdLpy7gwlDzNM8+0/92l0yrr+6Ldh6Rk4Cl+/GOADp1WigqtEfzyl9feWuROgjBkvAh8oqrqVyVJ0gPBwP8Bdqmq+rwkSc8AzwBPAyuAMW3/5gB/ansUhEFNAnY0ushrcnCbyURtazWTgjS8Pi2VJ08V0mgDi6SjyePh0wYPo3US00JNHKpv5rQD7o3U8eO4aO7ILSbWBD8ruEhYcBCbPtlBSV0Tv1qawebPjuBSVB5f/yIv/eQ7/Pvrm2lucfHDJ79O6uhEwq0hrHrwn9i59VV2f3GI/YdP8sL//ScAZqdN4Nd/eIMH7ltBTV0Db767s1P81lALk8Ym8vC3f0pkmJnZM6Zes76Hjp7gtqnjAaiorue+VUs7vT4iMpyUxGi+8y//xoFP3+C9jz7jfEEpv/nFj/ruoAuCMGiIjqwA27JlH5mZqcTFxXPy5Glqa2u5446MbtctKurX0IRb5PTpWvbseYPo6Gg0GonVq+/h+PH9JCTEk5SUBoCieNm+fQ9z5sxh+/atfO1rXyUyckSncsT5MHiUlno4cmQz69atJTj42h1Zol0FQRjuFMX3KEnw+utP8NprwKgvoTEZ3wXawMSNnFf+gd1hx+12Yw21dluWVFVBSt3Rfolb6BsvvPACDz/8cLd3ZDHjj9wVHc7q1fewc+dOEhLimT69PXdS2L59O3PmzGHTpk1XzZ2efbYfKyPckMLCQrZs2cJTTz3V4Y4sHchuMNaSlHTt7UXuJAiDnyRJofhuq3wcQFVVF+CSJOkeIKNttb8Bn+PryLoH+LuqqipwUJIkqyRJMaqqlvdz6ILQp4wSyDqYnl0EXkgL0qDovUw+do5oDTwWYeQbp8v5/9m77/A4qnPx49/Zoi3qvXdZsuQm2ZIsW46xDW4k2AQIJZSYHy2NcG8aJIFbUm5ILzf3kgRCEi6E5oSYYlxoBvcm9yrLRV0rraTd1fbd+f2x60U2wgVsSdjv53n2mZ0zZ2bemV2Zw75zznGo7ei08HJlPu5AkFv3tDDGBJlGLTWJsfxLRix/7rKzTu+i2ebC9MT/8fXPfYaZk6tY+tYW0mKNHG7pJG7e3Rj1Wr75hc9QUpQPwMqlj3HtrQ+QPGY2ep2WW2+YF+kl9c+nf0P9wjsonrIIo0HPvNlTeW31+lOu4at338J933yU2z634KzXe6ipmS/ddSONTcdRFCjIy/5AnVV//z2zFt1Fevlc9FoNX7vnc5EeYUKIy4skskaYzWbH6/UB4HK5sdvtNDYeJjc3D51OQ1PTMYqKCtFq5aO6VPj9AeLjY7npps/x5JN/obu7G1UN0tVlYeXKFZSWllFQUEBpaQkGQxTBYJCjR4+xbdt2qqsnk5SUgiKPI3/i+P1+9u8/QE9PD9Om1WE2m9izZy8dHZ2kpCQzbtw4jMZzn0dLCCEuRS+/DIsWvb+uKKHElbr31tDwgq3TIHsDuwb+DEYjgUCQQCCAy+3CYDCiKKH2lMlkRDl9PBXxiaNu/UoomWUZD6l7+Mv990rb6RKnvvmTUDLLnQzGHv5l4o2sWrVK2k5CXPoKAQvwZ0VRJgHbgAeA9EHJqQ4gPfw+G2getH9LuOyURJaiKPcC9wLk5eVdtOCFuFD6Z1WcU73vNR2j1xekIs4MQOOnyk/Z/l/lufxXuOjR9k4e+uNvI9t++817+e037z2l/l5rb+R9deU4Wvae2tPqpOSkBA5sevmMsVVOKEMhNMzg2XQdeify3t22ecg6RQW5nNi16qzHEkJc+jRnryIuJlVVWb16Fc899yzr1q1FVaGhYQdHjjTS3t7Be++9xwcGthWfeMeOneD551/E6XSSkJCAqqo0Nh4mIyOTV155BY/HzTvvvIPV2ovX66W1tYXU1FSWLv1HeAhK8UkzMDBAb6+VYDDAO++8w8GDh2lsPEJGRgbr16+XH9iEEAK49tpQT6yT/yR+85uPRrape2+lUXMj77X+it5eK11dXdj6+1FVsNsduFxOvF4v/f39IxS9uBjUrV/hq4vKKOjpkLbTZUJ98yf821UPMKY5WtpOQlw+dMBk4DFVVauAAULDCEaEe1+p53NQVVX/qKpqtaqq1ampqWffQYhhdvJL7VfVD5T7VDWy3aMG8asqHjVIUIU8g4E7M1KG3Hfw/sHwpkB4yAOf34+qqqiqis/vj6wHAqHlSQE1QEAN7RNUg3h83iG3B9UgvkHtLH/Az/0P/pjyMbmkpSW/Xx4M1T1dUA3iDwaGvjeqGjm2qqp4fF68ft8pcZx6zSo+34dvP+W4Ph8+n++M9T6u0JQh7sj9PtPrZP0P23am6xhc1+/3R8oG34vT18/X4POcfk6fz4fff35t7ZP7neT3+/F6vR8pNnF5kW4+I0xRFEpLy8jKyuTAgQMoCkyaNImtW7eQnJzMpEkTIpMviktHUlISkydXsXPnLnbs2IGiKEydWsf48RWsWbMGj8cTqWswRDF9ej2JiYm89967uN1uYmLOPDydGH3i4mKZNm06VmsPq1atpri4BLvdht1uIyMjk6gow9kPIoQQl7jgoP+/bW/v4E9/GqKSAmajmShDFE6nE0WBmJgY7HYber2emJho6Y11CZK20+VH2k5CXFZagBZVVTeF15cSSmR1nhwyUFGUTKArvL0VyB20f064TIhPDG+0mR+1tBIMBAkGghiNhtDTXKpKEBWP24PJaCSIitvlQqvRgQJajQaf349VUVg9MIDP48NgiIrse3LpcrvR6/S4TEZaWlvIyc5h8+ZNVE6qwmg0sHbtWsaWjyU5OZktm7cydnodiqKg02g5ePAQiqKhtLSEXTt343Q5qampQafVElRVGhoaMBoM6HR6TjSfYM6cOfT29pNRPg+TQc/3v3U77e3t5GbnoKKyceNGiouLSU9LQ0VFVUGjKLR3dHD8+HFqampQFAWNouAPBNBptbhcLtauW8ecOXPwe30se+VljAYDV8yaRXxcHAoKKmpkGQgEePHFF1m8eDFms/mUJE4gEECv1+Pz+dBoNDzzzDPU19dTUlISqacoCqqqnrKEUBJHr9cTDAYJBoNotVr8fj86nS5SF0LJGL1eH1k/duwY7733HmPGjOHEiRPU1tbyzjvvMHbsWOrq6njppZcoLCyku7ubeUBjYyMNDQ10d3czduxYjh07Rn19PWPGjInE4vf70Wg0KIqC3+/nueee46abbkJVVQ4cOMC+ffuorKxkzJgxvPDCC3z2s59Fr9ejKArPPvssN910U2T9w65Vp9NFfocOBoP4/X5eeukl5s+fj8lk4sUXX+TGG2/E7XZz4sQJNm3axJVXXklWVhZarTaynz58708KBAKhz1ijobe3lzfeeIPrrrsOgBdffJEJEyYwfvz4i/gXJy4FksgaBfLz8ykqKsJms9PV1UleXi6vv76cnp4epk+/U542vARFR0dTWFhEe3sHVmtP5B/zofj9ASyWLlQ1SCAQRKeTP9tPqsF/yna7DY1Gi8/nZ86c2SMXlBBCfOIoGIxGTEYjfn8An8+L0WDAavXh8/nJyIgf6QDFRSBtp8uTtJ2EuDyoqtqhKEqzoihlqqoeBK4E9oVfXwAeDS+XhXd5GfiqoijPAVOBfpkf6zR/k9+RRrubZ8KNZYNLBoao5TzDEc60bbB+aP4uNEM9wI5Q6Ww90Bh61ekg6s2nI3tEBjg8BlUn378ZWmiAmkFHLwd4A9KA4NMAPuBJ2Psk7A2NMTVj0HkHyw6/GDSSYVR4GQ3MD2/TAzefbOJv/EGkrjJoqTsKny8k8q/E4L8A7WnHXhIFbAm9BtdTTlsO3kc7xHEG1406bb0IKNIDx2A6wEYoMobWOQbXAxx4/zhjtpQyBiCB0ECqRkKDrG57v87gx7KigDt0wN+/AEBl+MWO0OtWBfjn+/UH1z3btZ6kCZfdBLA8VHabBlh6O1HAeGC8CTh1mrTIfVKefb+tPrg1ngTcCPBCaP0WgF3h12gl/6aOCvJ/dSMsLS0Vkyk0tntcXBzBYACDwUhV1WTsdhvR0dEjHKG40KKiDKhqkH/84x9ERemZPXsOBw4cIC4uBlDIy8uN/OCi0Sjk5uayd+8+XC4ns2fPxmAwjuwFiPOmKBry8wvQarUYDEZycrLRarV4vR5sNhvPPfc8d9xxB7GxsSMdqhBCjHoGQxTacAIj9N9LFY1GQ0xMLIGAP/IkoLh0SNvp8iNtJyEuS/cDzyiKEgU0AXcS+h31BUVR7gKOE/7tk9BPqlcT+hneGa4rTvr8Rxs+TAwvtftHHIj2YrfbsdtsmGOicQ04sQ04KMzPp62tneysLDxeLx6Pm0BQpbS0hB0NO/H7/YwbP47jx46DAnqdjuTkFJqOHMFoNFJUUsTOXbtJTEgkGAiQnZ1N4+HDKBoNVVWV7Nu7D5fLRXpGOskpyaxavxlfxmIOHDjAtZ+9lr179xIMBjnSeASjwUDVlMns2bMHjUbB6/URGxuLTqvF2mPFF/CTmpJCX18fvb19jB8/jkOHD1FeXoGCwu49u0lKSmL8+PFsWL+egoJCOjs6GHANMHVqHXt27Uar13Hi+HGMRiPRMTFcdeWVGIxGXn3lFYqKivB4PPT29REMBKitrWXtunW4XC6cA6HkX2lZGe3pWt7pVKirq2P58lDWJScnh66uLtLS0igsLGT79u1MnTqVnTt3Ul1djaqqbN68mZKSEnbv3s2iRYt48cUXCQaDJCQkYDKZMJvNpKWlsWXLFnJzc5kwYQKHDx/GYrGgqiqxsbFkZGTQ0tKC2WwmKiqKgYEB0tLSiImJYevWrdTW1uLz6TtvaQAAIABJREFU+aioqODJJ58kMzOTzs5OEhISWLRoEf/85z9ZsGABDQ0NVFVVsXbtWmJiYlBVle7ubgoKCmhqasLhcFBcXExHRwe33norTzzxBIsXL2bt2rV4vd7IOWJiYli/fj1ms5m5c+eyfPlyXC4XixYtYuPGjbS2tlJQUMDnP/95tmzZwhNPPMGCBQsYM2YMZWVlREVF4fV6eeyxx7jvvvt48sknWbhwIStXrsThcDBr1iz27dtHIBDAZrNRWlrK3r17mTJlCvv27ePuu+9m1apVrFu3jh/96Eds3LiRYDBIQ0MDqqpy7bXX8sorr5Cbm4vb7aazs5P77rsPg0F624szk0TWCFIUhZqaqWRkhLK6paWlkS6dM2bMAJBhBS9BCQkJ3H33PQCRLsF1dXWRnneLFi3m+PHjOJ0u4uPjWbx4MRDqknuyvvhk0Wp1LF68GEVRSE1NZe7cebz66qukp2eQlZWJxdLFeQ73LoQQl62EhMTIk4NmkwmV0ANB8fGhxzTlv5KXHmk7XX6k7STE5UdV1R1A9RCbrhyirgp85aIHJcRF5PN56enpprCwiP7YGPT6KFpczRh0erot3WRnZZGQmBie9yg0R5VOq0cJP7QTEx1DekY6CgpajQZFo8FkNlNQUMDRpmPEmqMBlaSkROLi48jOyUZBwWgykZ6Zgc/rIzs7m927dxMTYwolZeJi0Wg0JCUmsb1hO6lpqaSmpBAVFYVOpyMlJQVLVxc9PT0UFBRgcA6Qk5obGubb4SDKoKe1pZWiwmIK8gt4b+17xMXEkpOTQ2xMDAUFhQDExseRnpHBnt27ycjMoMdqJTMrE6vVCkBbWxtjSkvR6fW0d3RQV1dHe1s7QTWI2RxNUVERLpeLxMREjh8/zuSqyfzh6ddIyixj7Nix7N27l6KiImJiYlixYgVut5umpiaMRiNNTU2Ul5dTVlbGa6+9RkJCAlVVVWzfvp2KigqKioqYMGECPT09lJSUsH79ehITEwGw2WzYbDZUVaW8vJzOzk6Kiopwu90YjUYmTJjA/v378fl85ObmYjabCQaDNDc3M2nSJNauXUtNTQ1z5syhubmZvr4+du7cSXJyMqmpqcTFxVFUVERjYyPd3d1MmjSJI0eOcOLECWbOnMmuXbtITk4mJSUFo9EYmTd0ypQpbNmyhZKSEiZMmMDy5cuJiYmhtLSUuLg4ysvLaW1tZcOGDcyePZuGhgYmTJgAhOZzv/322zEajWzduhWdTkd5eTl6vZ7S0lKWL19OUVERsbGxlJWV0djYyO7du5k0aRL79u2joqICh8OBwWCgtbWV7OxsXn/9dQwGA/PmzcNms5GWlgZARUUFZrOZt99+m9zcXDQaDbGxsSQlJcnDiOKcSCJrGHk8Hnp7e08pc7sNOJ0fnPBwKE6nht5ez9krilHD5XLR399PTEzMoDIDbveZP3OPx82VV14Zrj90d3H5PoxONpsNl8t1yt+6y2XA5Tr1M6+vn05T01G8Xh/z5y9Ao9EwMOCQz/UTyuk812EdhBDn4/S2kxpUCX7IhNBD0QbVD7S9xOgmbafLj7SdLk/SdhJCXO6iU7Jo6Y+ipd0NhHqidLvNdHTZSE6KJdMXA12+cO3QoHLdx5rwes30+WM5cMIe2S8iLp8uqwpx+QT8fhobGykpyWB/8wAQ6sW873APoXHrjBw4boO4fJLTTaimLDKLsthzpBcwU1gResDeD7T3QWpeJQBpBTmkAXv37yM1JQ9NdCpOFTDn0N3mQReXhiGxiGNdPnJL6wAIAsctAQyJRQAYQnkh8sLrmQlFqCr079yBZcBJl8OA/5iN4vEzAWjrBUxZKMDRTi/amDxiYkKDGGYVp3Gsy8dnFt3A+KppANx1111AaF6mrq4uAoEAOTk5NDU1UVhYyJQpUwD4whdCQ+319PRw0003odVqWbJkySm39GSPMIvFgk6no76+PjKy1vbt2xk7dixmszlSv6qq6pT9S0tLI+9PJo8URaGoqIjTzZ8/H4AFCxZ8YJ/T3wPcfvvtAOzfv5+pU6dGtp9+DSfbyCfl5+dH3s+aNSvyvrr6/WcJFEU5JY6TdU/WP9m7raSkJNI7q7S09AMxQuihNICSkhIApk2b9oE6QpwLZfDEayOlurpa3bp160iHcVH19fXx05/+9AMZ5u3bJzMwEPMhe50qOtrB5MnbL0Z44iKx2ULDQw7+3M/nMz8T+T6MTn6/H6fTSVxcXKRM/s4vfW63my996UtDNkYvJdXV1WzdulW6NowCl2vbacHvVhPnsp3zMWymOFZ8de7FCE9cJNJ2uvxI2+nyJG0nMdwuh7aTEEII8UmnKMo2VVWH6qEtPbKGS3x8PD/60Y8uwJGuvQDHEJcO+T5cmuRzFUKIIdtO3//+eR9n+gWKR1wq5L+xlyb5XIUQQnwy+Xw+3G43brcbs9lMdHQ0AwMD6HQ6oqKi6O/vJy4uDkVR8Hg8GAwG/H4/breb2NhYVFXFarWi1+tPeSjkdCc7MiiKgqqqkeOenNLk5DnPNE+Ry+UCwGQyYbfbMRqN6HS6SFyD6zkcDpKSkvD5fGi1Wvz+0Fy2UVFRkWGfB1+7yWQ6pUf+6bH39fWRkJCAqqr4fL5Tzjd4u6Iokd79Go0mEttQQ0339fVF7sHpxzhfwWAQm81GfHw8wWAQv98fidHj8aDX6z8wfYzf7weIzPV6+rWc3Nfr9WIymdDpdGeNMRAI4HA4IsOuD2Woh4iG8nHvyYfx+Xw4nU5UVSUhIQG3200wGMRsNuP1etFqtac81OZ0OtFoNBiN5z7v7eDvqrh0nFMiS1GUY4AdCAB+VVWrFUVJAp4HCoBjwI2qqvYqoW/2bwhNvOkElqiqetk/Iidj8wshhBCXD2k7fXzSdhJCCCGEEJeqPRs2YLdYOH78OB3t7bS1tzN37ly0Gg2NR45gNpkoLCrirbfeoqamhoSEBI4dPUp+QQEtLS20tbUxaeJEtDody197jRkzZpCRmYnX60VRFDSKgqIo2O12dDode/bsoaK8nOiYGALBIKtWrqR26lSSk5Jwu93s2LmT3Oxs8vLzsdvtKIqC0WhEJZT4iNLrQ/M/eb2Ujh1Lw/btZGdlkZmdzfFjxygtK6OlpQXnwAAtLS2kpqbS0dlJanJyaC6rEydwOBzMmj0bNRhEHxXFieZmWpub6ejsZM6cOaSkpODzetFotaiqilarxWazYTaZWLFiBTOvuAKTyURraysZGRn4vN7I/Fxr1qxh3rx5+H0+1m/YwKSJE0lOSeFoUxMFBQXoo6LweDz4vF5MZjOugQHWvPsuV1xxBWowiNFkYuXKlcz41KeIjQ0NwxgMBkFVcbtcxCckRBJAWq0Wv89HXEICCuBwOAj4/bz77rt8auZM9Ho9XZ2d5ObloQItJ06Qlp6O0WjEHwiAqqLT6eju7kaj1ZKYkEBQVdFqNFh7e9m4fj1zrroKNRikvaOD1pYWcvPyyM7OZtXKldTPmEFcXBxR8fGU19Tg9/vxeDzExsZy7NgxNmzYwB133IHL5cJutxMXF4dOpyMQCA3RfuTIEXbu3MmCBQswGAxER0dD+HO2WCwkJyfT09ODwWDgmWee4cYbbyQ+Ph6tVksgEMDj8RAMBiNJqKioKHw+H/39/RgMBgwGA1FRUbhcrtA1+/14vV4CgQAmk4mDBw/S0NCA2+3m+uuvj3yf6+vr6ejoICEhgdTUVLxeLz6fj7Vr15KSkkJ+fj7x8fG4XC5UVSUxMRFVVbFYLERHR2MymfB6vfj9fjZs2EBsbKwMY3iJOZ8eWbNVVe0etP4Q8Kaqqo8qivJQeP1BYCEwJvyaCjwWXl72Hn8cOjshPR3uuWekoxFCCCHERSZtp49J2k5CCCGEEOJS5Onvp3PbNhSPhwxVxed2ozY34wcK9Xq6Ozpo7uwk1ePBdegQ5pQUDN3ddFmtKD4faT4fzRs3UltbS8LAANr2dqK0WlqPHkWj0ZCelobNbsfW34/L5cJrsaBJSMClKPT29pLscuE6dIiBxEQ6OjvRWq1UVFSQpNHwdkMD2dnZ9Nrt+P3+UNLFYiErI4Pm9nZO9PSQHxtLsL2dttZWjBoNk6ZPx3noEM7WVqL7+sjLyMBps5GZlMTsSZPYHU6M7du0iXHjxnFk9240Ph9Zqorf7ca+fz9ZpaV0NDcTHx+Pc2AAfVQU7W1txERHE+9w0LNzJyUlJeg7O+lqa6Onp4eKigoGrFbi7Xa6GxrIzskhKxhEbWmht60Ng8tFZ08PuXl56Hw+Du7dS9nYsVg7OjBZrfTu3k0gGESn05HodOJubEQXHU1LOFnW399PdlYW4woKaNi+ndYjR+jt7SUpKYlxc+ei1+tZtXUrxcXFmHt76dy+nfLycixtbfT29xMIBtG43WhVlZjERA4eOEBcfDwd7e3k5OTg8XpR7XZ6enowmUz4nE6S3W5aN21i/PjxOPr7yVEUgidO0NXRQbLLhbepiQ6/nxZVZVdTEy6Xi/Lycjo6OiLzzQI88cQTmM1mAoEAmZmZWK1WVFUlGAzS39/PX//6V66++mpKS0tRFIUVK1bg9XrRaDRYLBY0Gg1Hjx5l6dKl5Ofns3//fiZNmsThw4eprKxk2rRpLF26lMLCQo4dOxbpiRcbG8ucOXNYtmwZ48aNCyU4nU6qq6s5dOgQbrcbr9fLkSNH+Mc//kFcXByNjY0cPHiQsrIyLBYLY8eO5cCBAwwMDNDb20tBQQFbt26lrq6Ol19+mejoaL785S/T3t7OypUrycvLIzk5mYMHD0buQX19/cj+kYsLTnP2Kh9qMfDX8Pu/8v54DouBp9SQjUCCoiiZH+M8l4zOTigoCC2FEEIIcdmRttN5kraTEEIIIYS4FKmqyoDDQVlZGTExMeTk5jJhwgRaW1qw2WwUFhTg8XiIiYmhpqaGvr4+BpxO7HY7ZaWlmM1mcnNyOHjwILk5OUyqrGTF669TWFiIw+Ggo7MTu81GS0sL48aNIysri4qKCvbt24fRaCQ5JYWamppQEkurJT8/HwC7w0FsTAxjx46lo6MDj9tNcnIyzS0tmEwmJk+eHBkir7i4GIfDwYDTCUBKSgo5OTlkZWaSk51NdnZ2pKdOY2MjpWVlVJSXs23bNmw2G6VjxhAdHU1uTg4VFRWsWrWKoqIibDYbnV1ddHV1ER8fT0FhIelpaUyYOBGr1YrL6aSlpYW01FQ8Hg8F+fnExcUxtrycXTt3oigKJSUl9PX14XK5SEpKYt26dWRmZREdE4PZbCY1LY2U5GRUVWVqbS0up5Nos5mCggJsdnsk6eN0OikpKQn1wgoEqKmpobSsjAkTJuDzenE6nZjNZnJycsjJzaW0tJS+3l70UVF0dnXhcrlQFIVgMIjVasXS3Y3JZKKltRVFoyHg99PX10dX+HrHhO/Jyfs0MDCAXqejrq4ucq7CwkIURaHp6FF0Oh3Tp09n3bp1tLa2UllZSVRUFAB6vZ6rrroKnU7Hzp070ev12O12KisriYmJoaysjHXr1kW+kx0dHUycOBG/309raytVVVUUFBQwZcoUPB4Phw8fBiAqKiqS/MrPz2fZsmVkZ2fT1NQUqdvW1kZSUhJr1qwhKSmJ2tpa1qxZg8ViobKyEq1WS3p6eihh2ttLfX09BoMBh8NBSUkJzz33HHl5eaiqytixY8nIyIj0LJwwYQLJycm43W7S09OJiorC7/ezdOlScnNz8fv9VFRUyAgfl6Bz7ZGlAqsURVGBP6iq+kcgXVXV9vD2DiA9/D4baB60b0u4rB0hhBBCiMuDtJ2EEEIIIYQQQ9IoCrW1tXR0djJu3DgCfj8Bv5+ysWPJzMykpaWFqVOnotNqSUhIYMyYMezYsYOamhra29sZO3YsvVYr+QUF+H0+kpOTiQ/XCwYC2Ox2nAMDpKalsWfPHqbX19NvszFr1ixSkpMjcx/V1dVhtVoZCNeNiYmhq7MTa08PM2fOJEqvx+l0ctutt0aSQmazGa1OR2trK1OnTqVh+3YUoCA/n4GBAcaPH092Tg52hwOtVktsTAx106YRpdejqipTJk/GaDTS0dnJ+PHj8ft8ocRSaiolJSU47HYSEhIoKy3lwMGDxMXFUVtbS0pqKn6vF0tXFwaDgd6+PsorKiLJEVVVqayqwmQyYbFYmFpXx8YNG5hUWUl8fDx6vZ70tDQyMjI4evQo5RUVpKenk5iYSHV1NXaHg76+PiorK6msrMTlcpGbm8vRY8eoTEiguLgYo9GIyWTCbDZjMBgwmkxkpKdjtVqpqa4mPiGBlpYWvD4fM2fORKfV4vP7SUxMZN++fUycMIH4hARuuflm3G43caWlHG1qIjYujsLCQhobG6maPBlVVZk0aRIHDhxg0sSJJCUlUVNTg2NgAKvVyowZM/ClplI3axadnZ3MmDGDzMxMDh8+zPTpoVmCZ86cSXJyMjNmzMDj8ZCSkoLdbufIkSPU1NTQ29tLXV1d5Du5cOFCdu3ahdVqJTMzky1btjB79mzS0tJQFIWHH34Yu92OyWTi+PHjpKSkMGbMGHJyctBoNJF9rr76ao4ePcq0adMYN24c+fn5NDU1ccUVVxAbG8vx48eZMWMGbW1tKIrCNddcg0ajITU1lR07dpCdnc11111HdXU1RqORvr4+cnJy8Pl8jBkzBo1Gg9frJTo6GqfTSU5ODlVVVaSmplJVVUVsbCw9PT2UlJSM0F+3uFiUk5P9nbGSomSrqtqqKEoasBq4H3hZVdWEQXV6VVVNVBTlVeBRVVXXhsvfBB5UVXXrace8F7gXIC8vb8rx48cv2EWNVj/8Yeip4mPH4OGHRzoaIYQQ4vxUV1ezdetWeazpHEjb6cKQtpMQQohPMmk7jR7V1dXq1q1bz17xfD2rAzVw4Y8rLnkNO6Eq7tQywyPw47nw9ZkX77xfegle2AM9j3z8Y/1uHXx9BXh/8PGPda6Uh+GtO2F28cU9z0hc2/lqsEHVpJGOQly2FC3c4r/wh1WUbaqqVg+17Zx6ZKmq2hpedimK8hJQC3QqipKpqmp7ePibrnD1ViB30O454bLTj/lH4I8QalCc68UIIYQQQox20nYSQgghhLgMqAH4vDTLxEeQvBJSU08t+/daKPsyLFxy8c675fuwfzUsfO/jH8v6DKz8NSzc8vGPda4engK1j0Ft7cU9z0W8tk/dcQdj8vJ48oc/xFBbS+PLL5ObkQHAfz/9ND94/HF6HA50Wi2ezZs//EAWC8yff8HjE+Kc/G34n9M56xxZiqJEK4oSe/I9MA/YA7wMfCFc7QvAsvD7l4E7lJA6oH/QMDpCCCGEEJc0aTsJIYQQQgghPgqvz0dvXx8ut/uU8u7ubgKBM/f+6+3rw+3xADAwMIDD4YhsCwQCdHd3n/X8qqoOeS6X202/zXbW/YPBIJbubgaPANbT04P/tOP5/H6sVisA8+65h3n33BPZZrPbcblcH4jLEo4/GAwyMDAAgNPpxD7oOk/X19//gXv5YXGcC38gMGT9k/HZ7Haajh2LXL/L5cJmt59S99CJE8yvr+fg0aNoFCWSxAoGg2gVhZvmzeO2efPg5DHcbrw+35DxdHV14fP5UFUVm83GuYy8BmCxWPB6ved83UKMBmdNZBGav2Gtoig7gc3Aa6qqrgAeBeYqinIYuCq8DrAcaAIagceBL1/wqIUQQgghRi9pOwkhhBBCCCE+lKqq9Pb1cfzECQYGBkLJFlVl1bp1ZM2bR0x9PWOvuYamEyfo7Orizbfe4uZvfANjbS3aKVPInjOH97ZswR8IMOn668mbO5d33n6bluZm6m65hbwFC9iwcSPd3d243G4ajxzhrbffxu12E1RVKq+/Hu2UKZinTuXnf/oT/TYbra2tvLdlC+Wf/SxRtbUYa2u565FH6OvvZ/v27axZu5byRYsi+73+XqhXV0dnJ9d8+cvkzp2L3eFgxYoVtLS0UHPTTVTdcAMrVqzAYrHgDwTo6++nvaODjvZ2Vq1eTWtbG4FAAFVVsTscdHd3s37dOg4fPkxbezvW3l68Ph82u53XX38dgD+/9BLJs2ejnTKFyZ/7HHt276alpQWX2819//EfmOvq0E6ZQubs2Tz1wgvs3buXvv5+am+5haiaGjRTphA3fTr//fTTdHV1sWr1avYdOHDKta1YuxaAfpsNl8vFu5s3UzB/PsapU8mYN49rv/pVPF4vJ5qbuequu8ifN4/KG24gYdYsvvWLXwChxOKWrVvZsWMHHq8Xu8NBl8WC1eHg6pkzefa118hMTKS3ry90b/r6iFVVvn3HHeSmpqKqKh2dnXRbLJHP0eFwoKoq/TYb7e3tvPbaa+zatQuHw8H+/fvp6+vD4/FgsVhwuVzY7fZQks1i4fDhw/h8Ppqbm1m6dClHjx7F7/efVwJMiJF01qEFVVVtAj4w4qaqqj3AlUOUq8BXLkh0QgghhBCfMNJ2EkIIIYQQQpzNiy++SHZ2NoqioFEUVFVlw759/PALX8BoMPCdJ57g1gcf5L4FC1i9dSv/WL+eb91wA2VZWfzg6af5zAMP8Nbvfse3Pvc57vrFL/jtCy8w8/hxthw6xO/uv5+Ojg5WrFxJXFwc0dHR2Pr7aWlpoc/lojo+nj898ADL1q3j2//7v0SrKqmJidz185+TFB3Nk9/5Dpt37+bHL76I6nLx6enT+bcnn6TdauV3X/oS8cnJ3PXjH6OqKm1tbUwfM4bXNm3ipVdewWqxsG37dhoaG/nXa6+ls6uLTRs3kpuXh62/H2tvL0mJiXR0dPDO22/T39+PXq/nzTfewO3x4HI6SUlNZdWqVWRlZWE2m+nq7Iz0hFq9aRO/uu8+rP39/Nszz/D7pUuZO3kyO1tb+evy5bzwk5/gtFj41dKlfO9Pf+KZjAwOHzrE1PHj+dcbbiAtMZFHn36af/3VrxiblUVHRwc/eOop2nt7+d+vfIXuvj5++Nxzoc9j/Xpa29t54A9/YFJREY/efTcbtm/nsTfe4CuPPMJnpk3DbrfTbLWyYNw4/n3mTCqrqggEg6xcuRKNRoOqqvzPX/7Ct/7wB1RABRJmziQIKEDKlVfyuU99iptnzcJisbB7zx66ukKj0K9cuZLi4mIURWHZsmVMmzaNcePG8frrrxPIyKBfUTh48CB79+7Fbrezbds2cnNz0Wg0bNy4kRtuuIHx48fz29/+luLiYvbt20dnZyfNzc2sW7eOzs5Ourq6uP7660fqz0CIc3YuPbKEEEIIIYQQQgghhBBCXCCxMTFUVFSg1+tpaWkBYEZFBSW5ucydOZNPV1ezvbGRyspK1u7fT/WYMVQWFWHt6eE/77oLm8fDE//3f0waN477Fizg3UOH+PEzz/DpyZOpnTiRhIQEgsEgdpuN5ORkogwGEhMS0CoK/2/ePD41YwZfvP56TDodb+7cCUYjNq+XB669lpysLCaXljJ93DhWb99OclISjZ2dzBk3jvKSEmL1ehbW1qIAW7ZsoSAjg7S4OJ5ZuRKz2cyrGzag02i4qraW2NhYiouLWblyJYVFRdjtdoqKiyksLCQ9IwODwYC1t5fCwkLUYJDExEScTid6nY6amho2bdpETk4OaeE5xW698kriTSby0tLIiI/nSHs7iYmJ/OXVV7lj4UKumTWLaLOZexYsYMDno6OvD4/Xy68eeogEs5m0tDT++8EHUYGGgwcpLCyksauLxXV1eAcGmDdzJtPKylAArU7Huw0NeAMBrh4/nkkTJzKhuJjJhYW8vXMndocDp9NJgtHI4vp60lJSKCkqIhgM4vP5SE5OJjMzE53Hw9u//jUTcnO5uroa7+bNmHU6/mX+fJpeeonKzEyKi4sxm82YTSZ8fj8oCrExMXhODhcZHkLx5LHjExKIiYlh+vTpOJ1OAoEA6enpbNq0iZKSEvr6+tBoQj/9p6SkUFVVRVdXF3q9nqSkJMaPH8+zzz7LpEmTUJThn+9IiPOljIaug9XV1erWrVtHOoyL7vHHobMT0tNh0NCvQgghxCdCdXU1W7dulRbuKCBtJyGEEGL0k7bT6HHR2k4jMNm9uDQ07ISquFPLDI/Av82C74XHcHh1Pyx6BoI/hKz/gjlF8PTN79fXPwKPfQbunhpaj/9PcPvB/h8QpR36vF96Cf62C/r//f2yop/CxHT47Hi46yXw//D9bUtegBWHoeN7oDwMr9wKnykPbfvpO/Dwm+D9QWj9G6/CXxug+xEo+RmUp8IrS4aOI+fH0B6a5opguOxkb4vMaGj5ztD7KQ/DW3fC7OLQesUvISMG3roXov8dXIFQL6eTVODxRXBXLVz3FKw4Ap7A++f91Xz4l0+d+dq+vRx+tv7U3iAqkGmG1u/CvCfgWB8c+ubQMQMkfR/6vaFzasL7q+H3eXFw9Nun1v/lu/Cd1eD5wYcfs8EGVR8YB0RccIoWbvGPdBSjz98U+PyFzyspirJNVdXqobaddWhBceHIDzBCCCGEEOdO2k5CCCGEGPUuwg954jKQvBLCPYxu/vstoTKlkR3+eoLzf4lGo2F3y+NEaR+HhZtJ+uNnOa7GEpj3Z040N9Nns+FX76Ri8RNQVcVtDz1EQFmD2ajl+tcn8cr//M/Q593yfZwNrxCcvynSW8f6oxnkTlhIxaJFBF5aQnv1CjLDsR17fglJyb2wcBm6R6bwb81JfObrqwE4tP4RUFbAwi0APFJv49ezZ/Oy4Wc09X+Lv/36zzBx4pBhtCx8//28cKN/1eOPn/2+PTwFW9mj9NbUkJiQAL9fDInJsPBJ4n42h3vmzuXX3/lgFuwPzz/Py4d/xt9/8hM+fcUV6HQ6tFOmECy9HxYuIerfa9luXMKY4qtIT0/n4PqfR65trPPvGDf/FNemTUPH9I97ULwdsPCVyGf53PXPnlLFuhD2HDpE7e2349y0iZu/+U26rFbeevLJoY/Z+Rd4838Jzt9IS2srmZmZ6HWn/YxvscAyiAtuAAAgAElEQVT8+QA4HA6sViu5ubkf2ruq6g9VADTc1/AhN1cMSR5YGDVkaEEhhBBCCCGEEEIIIYQYAW22VtpsraAovL5pE9v376epuZmfP/UUdRUVAPy/xYvZsG8fL73xBskpKdz34x+TZDYzvaqKNzZs4NnVq/nr97/P0p//nOUbN7J05coPPZ8/GOTz3/42TrebB3/xC+wuFw/cdhs1EyaQFB3NNV/9Kn02Gy+tXs26PXu4+7OfBSA+TcP+jVaOtbayde9ennvjjVOOmxAXx7j8fD7/ve+REhtL7YcksT6uuPj4UBLrNHdfey2PL1vGq++8A0BzRwcP/uIXAPT09aEoCsW5ubi9Xhbcd1+kJxhAbXk5v33+eQzR0TS2tPD8oGu77Zpr0Gu1XHv//Vj7+/F6vbz81ls888orH4gh8lkOYdlbb5GdkgLAzkOHmFFV9YE6fr+fPpsNj88HqorN4SApOfmDSazTxMTEkJeXd8YhAo/2HuVo79EzHkeI0Ux6ZAkhhBBCCCGEEEIIIcQImz15MlfcdRdun4/S7Gz+/utfA/D1JUvYdegQtz3yCL5AgMzERFb+/ve4PR5u+Na3+PS0aVw/dy4At82bx5L/+A/m1dcTFxPzgXMkms00NjcTW19PlE7HT776VUry8wFY+dhjXPvAAyTPno1eq+XWefP4+pIlAIz5jIG9L7opXrQIo17PvKlTeW39+lOO/dVbbuG+Rx/ltgULLuJdGtoPvvY1+ux2bv7Od3B5vWg1Gkqzs/nJN77BN++8k7+9/jqTbrkFjaLwmenTidK+P/7iP3/zG+rvuGPIa4uKiuLdJ5/kc9/4BulXXklQVYkzmXjk7rvPK773GhoYX1ICQLPFwjWzZn2gzu+ff577f/nLyHri7NmkxMRgWbPmI9wRIS4tMkeWEEIIIc6JzPMwekjbSQghhBj9pO00elzUObJkaEHxETSsXElVePi+mX+eCcC7d747kiGd1bnEuXnXLuruvJPm5cvJTk8frtBGjeH8LBssFqrCQwuei4RHQ73Y+h7qu1ghXZrk3/mhyRxZQgghhBBCCCGEEEIIceny+/00HT1K0Q03wJJw4ZQpIxnS2S0JLz8kTj9wP1ABZF999fDENNosCS9H42f5UHgZHn5w7549IxfLCFAUhaKiIoxG40iHIj4iSWQJIYQQQgghhBBCCCHEMHHY7XQ1NlIEcPJ39R+OYEDnoiW8HCJOiwPSHwWTFt65G8gdzsBGkTPcowvOBkw6j/pHTl0NBoND17tEHTp0iKioKErCwzuKTx5JZAkhhBBCCCGEEEII8VH8TUaPFOcvYSfMjhvpKC6c1BgIjvZEnDjFhAkTRjqEYeX1ekc6BPExSSJLCCGEEEIIIYQQQoiPQuZOER9Br+Y5tvT3U8MX3y98eOTiOSdLwsvRHudIWhJejsZ79P2RDkCIj0cz0gEIIYQQQgghhBBCCCGEEEIIMRTpkSWEEEIIIYQQQgghhBCjQM+qVWzZsoXsnBwOHTrE1Vdfzd///ncWLVpEXGzsyAX255mh5bZ3h+2U7777LtXV1ZjNZrZt305MTAwWi4W8vDzyckfhRFzDeY8sFpg/H4fDwZo1a/j0pz9NIBDgscceo7CwkD179pCSksK8efPIzcu7+PEIcZFJIksIIYQQQgghhBBCCCGGiTY2lj3Hj6MDTgyEyhrC2wJ+PwkTJtDr8ZA+ZQr7bTZy6+rYb7ejd7lGKmROOIIAbO/qGrZz7unvR9vdjcloxJeeTr+ioDWb6dRq6R7GOM7VcN4jfVwcqqqiqqHhTVVVRaPRcO+999Ld3c2MGTPQarUYjcYh9z+53+XicrveS5EksoQQQgghhBBCCCGEEGKYjK2uZsPu3VQBfWNCZVUnN1599QhFdWZ9D4WWkxcuHLZzTv4Y+774wgsXLI5zZSlSADhit1/8k9ntHFi6FLfbzb59+3A6nR9a9XNDlC1duvTixTYKnThxgmuuuWakwxAfgySyhBBCCCGEEEIIIYQQYhjV1taOdAiXtOuuu27Yz3nPz+4Z9nM7HA4SEhK4+jwToCNxf0bS9u3b0Wg0Ix2G+BgkkSWEEEIIIYQQQgghhBDDSFGUIcv/+pe/cMMNN2A2mz+0zoh4NCG0VPuG7ZSvvvoqs2bNIjo6mpUrV1JfX8/OnTsZO3YsKSkpQ+8UvmdarXbY4jzdcJ5bq9Wi0WjQarUEg0GWL1/OvHnzWL16NQsWLPjQ5M1I3p+RIEmsTz5JZAkhhBBCCCGEEEIIIcQocPjwYf70pz8xY8YMJk/+OIPrXVqMRiO7du1i9+7d0pvtQ6iqysaNG/H7/ezYsQO3282YMWOYONKBCXEBSCpSCCGEEEIIIYQQQgghRoGUlBTmz5/P0aNHRzqUUUNRFCorK1m9ejVZWVno9fqRDmnUMplMFBYWYjQa0Wq1LFu2bKRDEuKCkB5ZQgghhBBCCCGEEEIIMQpMnDiRhIQECgsLRzqUUSU+Pp7y8nKqq6tH15CLo4iiKNTV1VFRUUFPTw/jxo3D4/GMdFhCXBCSyBJCCCGEEEIIIYQQQohhZLVahywvLS3F5/ORlpZGS0vLMEf14YLBIMCwxtTd3U1rayvR0dEA1NfXo6rqGWPICS9H4t6NxD0aGBigu7s7cs6ysjI6Ozsj36P6+voh9xtN363h0NXVRVxc3EiHIT4GSWQJIYQQQgghhBBCCCHEMOru7h6yPCc39wNl69auvdjhnNXJJM3x48eH7ZwWi4Xm5mZMJtM573MykTWccZ40EvfI5XJhsVjOeM6cIcpG4v6MpK6uLkpKSkY6DPExSCJLCCGEEEIIIYQQQgghhlFpaek51/2wXjXDSfde6Gfk4Yylt7eXuro6YmJicDgctLW1kZmZSUdHBwUFBeh0Ojo6OrDZbBQXF6PTvf9T90jcs5G4Rw6HA4/HQ319PYFAgMbGRkpLS886/OJo+E4NJ6PRKENSfsJJIksIIYQQQgghhBBCCCGGyS/+9Ss4mpt40wgVL4TKHjaGlt4r6lE0GjRaDdo31oQKF1/1kc6ji46mYlrtGevoTWYKKirOeqyEDi8ADetXfqRYPooTh7ex0+zHbDSxY8cOOro68Xm9BAIBCvLzKSwqoq29jX1791FaXsk1191C4rBFN/r4fD6WLl3KnDlzmDhxInv37sVoNDJxpAMT4gKQRJYQQgghhBBCCCGEEEIMF2sHD43PJe9IA78vDhV9sSe03JGgQafXUFRYhHlbOJFVd+69twZ7p9PCrKrCM9bZa+1lXFnqWY+Vl6sBoOoc6l4o9q54qkpTMJvMePpisbbtJistBTWoZUxeDH3dh1Cc/RSm68HvZNmyZSwZtuhGJ6fTydGjRzlx4gQ2mw2XyyWJLHFJkESWEEIIIYQQQgghhBBCjAKV774Xfrfm/cL/fuyjHUwF/rH07HW053CsO8PLKVM+WiwfwcxB7+vCrw/TYIUq+6CCkRhG7qHhP3cM8OnweyPwo2E7sxDDSxJZQgghhBBCCCGEEEIIMZLmXoRj9gPTzlLHAZSfw7Gaw8v/+lgRXTxHgTN3Prv4joSXz4xoFEM7cvYqQoxmksgSQgghhBBCCCGEECNGUZRjgB0IAH5VVasVRUkCngcKgGPAjaqq9iqKogC/Aa4GnMASVVW3j0TcQnxUikaDtbeXvJEORFy2li1bNtIhDKuuri7mzZs30mGIj0ESWUIIIYQQQgghhBBipM1WVbV70PpDwJuqqj6qKMpD4fUHgYXAmPBrKvBYeCnEJ4ZeH8XYiiJ49z0IQHM7mF+GR+PgWQU8wL8Z4NrQtFT0qnCdG2boIAg8rIP57lBnqkkKmLTQqsKyqNNOpAKD0rxf64fnndCZeVqd8xla8Luhxe8c8HUreEdLNs5KKB0+kk4OLXjriEYxtIdOXZ0/f/7IxDGCoqJO/wMRnySSyBJCCCGEEEIIIYQQo81iYFb4/V+BdwglshYDT6mqqgIbFUVJUBQlU1XV9hGJUoiPyKh//2fZ7n7wAruC8Kto+K4bfuuD76rQp0KdBnK18AN9qP4JFXIV2KbCgAJztfD5cNJrkwoP+uBEAPxAug9+aYBPnUuyagQktMDSFDAo8GkL2HLe33abFV5xgi0A5QbYlzFycV5qjEbjSIcgxHmRRJYQQgghhBBCCCGEGEkqsEpRFBX4g6qqfwTSByWnOoD08Pts3p+tB6AlXHZKIktRlHuBewHy8kZLlxEhTnP/l2Dr4xzo8QPwdhCe+NqX4BePkZ2SyF0VZfxs/RZa/QEerK/h3j0HCQRVrhlfxtiWNt491saCyePZ3doGt98EgGXPAa5saWFJXS37HAM8tXsv/+9gE4effwp+/kd4axP87U/vx2DthfqzTaQF/GVmaLnt3dDy8WfgkV/Dti0f+fKdLjcDBTOYs3sz3/n+r8hfvRbWvRTZnv/D3/CARsMrK9fg8fhg4xmGwztogekj3Mvo0YTQUu0b2TiG8mgC+PpBVUc6EiE+Es1IByCEEEIIIYQQQgghLmszVFWdTGjYwK8oijJz8MZw76vz+vVVVdU/qqparapqdWpq6gUMVYgLzxb+hbY7APqHH2ONFRo6nHx6XAV6RYMnAGvb+njmmI2njtv5lzcb2N1rI1YD/731CH9otLLwj/8HwB/W7+Uv24+THReLQa/jx/d/kQFvgGPt7+d6p931ELqZtxJ75R387eXVkfIdew6QO2Eu2rQpGLNquftrj0S2+VxBdv7MiTZtCtE5dbz57ubIts/e/gCFlQtOuaaaK2+m9qpbznjdr65YQ2J8NBqNhvWbd1E1oeyU7T96+AG+/937SYyPO78bKoS45EgiSwghhBBCCCGEEEKMGFVVW8PLLuAloBboVBQlEyC87ApXbwVyB+2eEy4T4hMpzhDL9NTwuH9+hS1fvJ5p8dDt8nHn317DHwwy4IP/3XaYK9OM3JIXTbJRz+utDpL1Wr48pRhnAJr63Pzfpt2sPt7FS3dcg0ajAPD3N98mSgsFmaGJsbrsboqyUrGteoL7r7uKR59cRtOxUCfHq669l9TkBHoOv83Tj/2Avzz3Or/5/VMAHH8qiM8Bhzf/k3deeZxV72yKXMN/PvRljrdaON7SBoDb46FhdyNf/9LtQ17zF7/+n2hTp3DzPd/FYnWgTZ3C2s17ePrvq0PvN227KPf6YitMLKQwsXCkwxhSYWIhhTI2m/gEk0SWEEIIIYQQQgghhBgRyv9n7+6jLa3qO8F/f9YLoCgFWClJVUWIlhqMCFgSbDKZCL6A2had8QWigdiYMjZmYcfEENM9jmvsHh1nQmTGpocIsbRtkUbTsgjREMSYpCNaCEGQICVBqBKoK1UFIgIW7PnjPuAFCurWfTv7Fp/PWmed59l733t+93dPsTb3e85zqp5WVU9/6DjJq5Jck+TCJCcPy05O8tA1xS5MclKNOzLJnT4fi/ns1190Qp6z/4FJkqOW75tDV/xMFi9Ifm3VAfnyzZvz4588kB9uT17xc0vzrKcuzqJ6Ss5946ty9/Zkr1qQG2+9PS/eb1G+e+f2/JuL/j6n/4tfzCErfiZJcvMPtuTMCy7Kb732lQ8/3uIFlU994N/mqXvulf946kl5+l6Lc8ZZn8w3rvxW7tj2o/zFZ/9TluzzjLxhzatz1BG/mP/vE59Lkmy5aXve/29/Oz9/4Mq89LAX5c1rXvHw9zzkhc/Ps5Yuyf/+f56VJPnI/3Nu9li8MCf8L6/Z4c/8n//4/Xlg7Irsu+Rp+W/n/Mf8wxf/LHs/dXG23/6NPDB2RX75l14yG62edVe+48pc+Y4rR13GDl35jitz5bNHXQVMnSALAAAAgFFZluTvquofk3w9yV+01r6Y5ENJXllVNyR5xXCeJBcnuTHJhiR/muTfzH3JMLNee9ghSZLv/GBL/uePnJW7Hkj+/uZNuXt7y09a8mAqz973p5fX23r/vXlKJTfffX/+5vtj2e9pi7LH8Ffe973qqCTJP/9gaz74xcvy8kNfmD/6rd98+Gv33mNRnvKUn/5JeMnee+WWjbfl29d/NwueUjlg2U8vxXnQs382W7bdlSS57ycP5IW/8NyH516w6pHvPDrx116d//6X45+fte4zF+XoX95xGHXjTbdkwdKXZMHSl2TLth/lzW9/X4589dvyo3vuz6JlL82b//V7drV9wJOAIAsAAACAkWit3dhae/Fwe2Fr7T8M43e01o5pra1qrb2itbZlGG+ttVNba89prb2otbZ+tD8BTN/zf/ZZqSTPe+Z++Zvff2fWv/ed+a2XvTR7L6wsquTpixbme1vvytlvf0vOWfvWfObKa9Ja8qm3Hp//8d535ta7H0xL8oxFC3LKZ/4im7bdlTX/5b/lefsvybn/2/se8Vh33/eTPPjggw+fb7v7x1m54lk5+PnPyQMPttx6+9jDczfd/P3st2Q8QFu8aEGuvW7Dw3Pf+e5Nj/i+//73fztb77w7F/7ll3Pjzbfl3//+O3b4s/78gSvzwNgVefc73pxDfuHAPDB2RVb+7DPzf33gd/LA2BX57Ln/9/SaCeyWBFkAAAAAACP2t5u25OqNm3PTlrvy4b+9Kv/Timdm7z0W5pBlz8hf3zyWC7/1ndz14/vzueu/n6V7PCUv/bkD8rc33JxrttybQ5bukc++5dicf/3GvPxP/2tesO8z8nvHHfOYx7j/gZbf/MBHc8+9P86/O+tT+eGP789p73hrXnrYi7LfkqflX57wrmy78678+UWX5O+/fk3e/hv/KklyxGG/kI987FO56eZNWX/VtTnvz//6Ed93yT7PyAuf9+z8+to/yjP3fXqOeMkhT/izXr7+Wzn8kBckSW4b25pf+5evfMyae++7L9vuvCsPPPhgHnzwwWy7867ce999U20vMI/5iDcAAAAAgBFaVMmihclL/vPn0lry9MXJFVvHUpV8/947sseeya+ff2l+8mCyYEHyN29/fe69/4G8+TNfyvP2WZx991yUX37OyvzSs56ef7j9h7nnwa35h3UXpH3ygiTJRR95f5LkZ56+Z27YeHue8aq3Z89FC/J7J78uz/358Q9P+tIFZ+X4t5yW/Ve9PIsWLshb3vCq/O6pv5kk+e//5aM56riT8pyXvD577rEor3r5L+UvLvkfj/gZ3vX2E/OO3/tQ3vrGY3f6837nxlvyzlPelA03fi9VyYE/t/wxa15/4rtyyVe/+fD5vs95eV75K4fnrz7/p1PqMTB/CbIAAAAAAEbong++c1Lrzrjs73Lxd76bl/7cAUmS7/+vv/WI+a/+zlsfPv7K7WP51Tf8q4fPz3z+83Lm7619xPprt2x9+Hj1oS/Mxmsf+U6rh+y/35L80+UXPmFth77o+amMX2ZwZzZ/5ysPH9/7/a/vcI3ACniISwsCAAAAAMwD+z11r5x65OpRl/EY2x/Ynt/5g/8jBz9vZZYfsGzU5QC7Ge/IAgAAAICp+K816gqYhxZuTb5y+aVT+tpnJ8m9yVcu/+pO1y54apK/v+CJF9093KZh7M5k2anJXouSr/y7JF96yfS+4VT8c5Kb5v5h5x3/zdp1evZYtWDOH1KQBQAAAAC76tfbqCtgnjr4jv+QXz3soFGXMW7L1uSol03rWyxN8uCbZqacKbt+LPkXrx5xEcBscWlBAAAAAAAAuiTIAgAAAAAAoEsuLQgAAAAAMEcW77M051/5z6MuI0myaK+n5v7rx0ZdxrQt2usZoy4BmEWCLAAAAACAOXL8SWtHXQLAvOLSggAAAAAAAHRJkAUAAAAAAECXBFkAAAAAAAB0SZAFAAAAAABAlwRZAAAAAAAAdEmQBQAAAAAAQJcEWQAAAAAAAHRJkAUAAAAAAECXBFkAAAAAAAB0SZAFAAAAAABAlwRZAAAAAAAAdEmQBQAAAAAAQJcEWQAAAAAAAHRJkAUAAAAAAECXBFkAAAAAAAB0SZAFAAAAAABAlwRZAAAAAAAAdEmQBQAAAAAAQJcEWQAAAAAAAHRJkAUAAAAAAECXBFkAAAAAAAB0SZAFAAAAAABAlwRZAAAAAAAAdEmQBQAAAAAAQJcEWQAAAAAAAHRJkAUAAAAAAECXBFkAAAAAAAB0adJBVlUtqKorq+qi4fygqrq8qjZU1WeravEwvsdwvmGYP3B2SgcA6Je9EwAAAMD07co7sk5Lct2E8w8nOaO19twkW5OcMoyfkmTrMH7GsA4A4MnG3gkAYBK8AAgAeCKTCrKqakWS1yb5+HBeSY5OcsGwZF2S44fjNcN5hvljhvUAAE8K9k4AALvEC4AAgMc12Xdk/UmS9yZ5cDjfP8m21tr24XxjkuXD8fIktyTJMH/nsP4RqmptVa2vqvVjY2NTLB8AoEv2TgAAk+AFQADAzuw0yKqq1yXZ3Fq7YiYfuLV2dmttdWtt9dKlS2fyWwMAjIy9EwDALpnxFwAlXgQEALuTybwj66gkr6+qm5Kcl/FXxXw0yZKqWjisWZFk03C8KcnKJBnm90lyxwzWDADQM3snAIBJmK0XACVeBAQAu5OdBlmttT9sra1orR2Y5IQkX26tvSXJZUneMCw7OckXhuMLh/MM819urbUZrRoAoFP2TgAAk+YFQADATk32M7J25A+S/G5Vbcj427jPGcbPSbL/MP67SU6fXokAALsFeycAgAm8AAgAmIyFO1/yU621ryT5ynB8Y5IjdrDm3iRvnIHaAADmNXsnAIAp+YMk51XVB5NcmUe+AOhTwwuAtmQ8/AIAdnO7FGQBAAAAwEzzAiAA4PFM59KCAAAAAAAAMGsEWQAAAAAAAHRJkAUAAAAAAECXBFkAAAAAAAB0SZAFAAAAAABAlwRZAAAAAAAAdEmQBQAAAAAAQJcEWQAAAAAAAHRJkAUAAAAAAECXBFkAAAAAAAB0SZAFAAAAAABAlwRZAAAAAAAAdEmQBQAAAAAAQJcEWQAAAAAAAHRJkAUAAAAAAECXBFkAAAAAAAB0SZAFAAAAAABAlwRZAAAAAAAAdEmQBQAAAAAAQJcEWQAAAAAAAHRJkAUAAAAAAECXBFkAAAAAAAB0SZAFAAAAAABAlwRZAAAAAAAAdEmQBQAAAAAAQJcEWQAAAAAAAHRJkAUAAAAAAECXBFkAAAAAAAB0SZAFAAAAAABAlwRZAAAAAAAAdEmQBQAAAAAAQJcEWQAAAAAAAHRJkAUAAAAAAECXBFkAAAAAAAB0SZAFAAAAAABAlwRZAAAAAAAAdEmQBQAAAAAAQJcEWQAAAAAAAHRJkAUAAADASFTVnlX19ar6x6q6tqo+MIwfVFWXV9WGqvpsVS0exvcYzjcM8weOsn4AYPYJsgAAAAAYlfuSHN1ae3GSQ5McW1VHJvlwkjNaa89NsjXJKcP6U5JsHcbPGNYBALsxQRYAAAAAI9HG3T2cLhpuLcnRSS4YxtclOX44XjOcZ5g/pqpqjsoFAEZAkAUAAADAyFTVgqq6KsnmJJck+W6Sba217cOSjUmWD8fLk9ySJMP8nUn238H3XFtV66tq/djY2Gz/CADALBJkAQAAADAyrbUHWmuHJlmR5IgkL5iB73l2a211a2310qVLp10jADA6giwAAAAARq61ti3JZUlelmRJVS0cplYk2TQcb0qyMkmG+X2S3DHHpQIAc0iQBQAAAMBIVNXSqloyHO+V5JVJrst4oPWGYdnJSb4wHF84nGeY/3Jrrc1dxQDAXFu48yUAAAAAMCsOSLKuqhZk/AXX57fWLqqqbyc5r6o+mOTKJOcM689J8qmq2pBkS5ITRlE0ADB3BFkAAAAAjERr7eokh+1g/MaMf17Wo8fvTfLGOSgNAOiESwsCAAAAAADQJUEWAAAAAAAAXRJkAQAAAAAA0CVBFgAAAAAAAF0SZAEAAAAAANAlQRYAAAAAAABdEmQBAAAAAADQJUEWAAAAAAAAXRJkAQAAAAAA0CVBFgAAAAAAAF0SZAEAAAAAANAlQRYAAAAAAABdEmQBAAAAAADQJUEWAAAAAAAAXRJkAQAAAAAA0CVBFgAAAAAAAF0SZAEAAAAAANAlQRYAAAAAAABdEmQBAAAAAADQJUEWAAAAAAAAXRJkAQAAAAAA0CVBFgAAAAAAAF0SZAEAAAAAANClnQZZVbVnVX29qv6xqq6tqg8M4wdV1eVVtaGqPltVi4fxPYbzDcP8gbP7IwAA9MPeCQAAAGDmTOYdWfclObq19uIkhyY5tqqOTPLhJGe01p6bZGuSU4b1pyTZOoyfMawDAHiysHcCAAAAmCE7DbLauLuH00XDrSU5OskFw/i6JMcPx2uG8wzzx1RVzVjFAAAds3cCAAAAmDmT+oysqlpQVVcl2ZzkkiTfTbKttbZ9WLIxyfLheHmSW5JkmL8zyf47+J5rq2p9Va0fGxub3k8BANAReycAAACAmTGpIKu19kBr7dAkK5IckeQF033g1trZrbXVrbXVS5cune63AwDohr0TAAAAwMyYVJD1kNbatiSXJXlZkiVVtXCYWpFk03C8KcnKJBnm90lyx4xUCwAwj9g7AQAAAEzPToOsqlpaVUuG472SvDLJdRn/o8wbhmUnJ/nCcHzhcJ5h/suttTaTRQMA9MreCQAAAGDmLNz5khyQZF1VLch48HV+a+2iqvp2kvOq6oNJrkxyzrD+nCSfqqoNSbYkOWEW6gYA6JW9EwAAAMAM2WmQ1Vq7OslhOxi/MeOf+fDo8XuTvHFGqgMAmGfsnQAAAABmzi59RhYAAAAAAADMFUEWAAAAAAAAXRJkAQAAAAAA0CVBFgAAAAAAAF0SZAEAAAAAANAlQRYAAAAAAABdEmQBAAAAMBJVtbKqLquqb1fVtVV12jC+X1VdUlU3DPf7DuNVVWdW1YaqurqqDh/tTwAAzDZBFgAAAACjsj3Je1prByc5MsmpVXVwktOTXNpaW5Xk0uE8SY5Lsmq4rU1y1tyXDADMJUEWAAAAACPRWmadCfcAABkHSURBVLu1tfbN4fiHSa5LsjzJmiTrhmXrkhw/HK9J8sk27mtJllTVAXNcNgAwhwRZAAAAAIxcVR2Y5LAklydZ1lq7dZi6Lcmy4Xh5klsmfNnGYQwA2E0JsgAAAAAYqaraO8nnkry7tXbXxLnWWkvSdvH7ra2q9VW1fmxsbAYrBQDmmiALAAAAgJGpqkUZD7E+3Vr7/DB8+0OXDBzuNw/jm5KsnPDlK4axR2itnd1aW91aW7106dLZKx4AmHWCLAAAAABGoqoqyTlJrmut/fGEqQuTnDwcn5zkCxPGT6pxRya5c8IlCAGA3dDCURcAAAAAwJPWUUl+I8m3quqqYex9ST6U5PyqOiXJ95K8aZi7OMlrkmxIck+St81tuQDAXBNkAQAAADASrbW/S1KPM33MDta3JKfOalEAQFdcWhAAAAAAAIAuCbIAAAAAAADokiALAAAAAACALgmyAAAAAAAA6JIgCwAAAAAAgC4JsgAAAAAAAOiSIAsAAAAAAIAuCbIAAAAAAADokiALAAAAAACALgmyAAAAAAAA6JIgCwAAAAAAgC4JsgAAAAAAAOiSIAsAAAAAAIAuCbIAAAAAAADokiALAAAAAACALgmyAAAAAAAA6JIgCwAAAAAAgC4JsgAAAAAAAOiSIAsAAAAAAIAuCbIAAAAAAADokiALAAAAAACALgmyAAAAAAAA6JIgCwAAAAAAgC4JsgAAAAAAAOiSIAsAAAAAAIAuCbIAAAAAAADokiALAAAAAACALgmyAAAAAAAA6JIgCwAAAAAAgC4JsgAAAAAAAOiSIAsAAAAAAIAuCbIAAAAAAADokiALAAAAAACALgmyAAAAAAAA6JIgCwAAAAAAgC4JsgAAAAAAAOiSIAsAAAAAAIAuCbIAAAAAAADokiALAAAAgJGoqnOranNVXTNhbL+quqSqbhju9x3Gq6rOrKoNVXV1VR0+usoBgLkiyAIAAABgVD6R5NhHjZ2e5NLW2qoklw7nSXJcklXDbW2Ss+aoRgBghARZAAAAAIxEa+2rSbY8anhNknXD8bokx08Y/2Qb97UkS6rqgLmpFAAYFUEWAAAAAD1Z1lq7dTi+Lcmy4Xh5klsmrNs4jAEAuzFBFgAAAABdaq21JG1Xv66q1lbV+qpaPzY2NguVAQBzRZAFAAAAQE9uf+iSgcP95mF8U5KVE9atGMYeo7V2dmttdWtt9dKlS2e1WABgdgmyAAAAAOjJhUlOHo5PTvKFCeMn1bgjk9w54RKEAMBuauGoCwAAAADgyamqPpPkV5M8s6o2Jnl/kg8lOb+qTknyvSRvGpZfnOQ1STYkuSfJ2+a8YABgzgmyAAAAABiJ1tqJjzN1zA7WtiSnzm5FAEBvXFoQAAAAAACALgmyAAAAAAAA6JIgCwAAAAAAgC4JsgAAAAAAAOiSIAsAAAAAAIAuCbIAAAAAAADokiALAAAAAACALgmyAAAAAAAA6JIgCwAAAAAAgC7tNMiqqpVVdVlVfbuqrq2q04bx/arqkqq6YbjfdxivqjqzqjZU1dVVdfhs/xAAAL2wdwIAAACYOZN5R9b2JO9prR2c5Mgkp1bVwUlOT3Jpa21VkkuH8yQ5Lsmq4bY2yVkzXjUAQL/snQAAAABmyE6DrNbara21bw7HP0xyXZLlSdYkWTcsW5fk+OF4TZJPtnFfS7Kkqg6Y8coBADpk7wQAAAAwc3bpM7Kq6sAkhyW5PMmy1tqtw9RtSZYNx8uT3DLhyzYOYwAATyr2TgAAAADTM+kgq6r2TvK5JO9urd01ca611pK0XXngqlpbVeurav3Y2NiufCkAQPfsnQAAAACmb1JBVlUtyvgfYj7dWvv8MHz7Q5e9Ge43D+Obkqyc8OUrhrFHaK2d3Vpb3VpbvXTp0qnWDwDQHXsnAAAAgJmx0yCrqirJOUmua6398YSpC5OcPByfnOQLE8ZPqnFHJrlzwmV0AAB2a/ZOAAAAADNn4STWHJXkN5J8q6quGsbel+RDSc6vqlOSfC/Jm4a5i5O8JsmGJPckeduMVgwA0Dd7JwAAAIAZstMgq7X2d0nqcaaP2cH6luTUadYFADAv2TsBAAAAzJxJfUYWAAAAAAAAzDVBFgAAAAAAAF0SZAEAAAAAANAlQRYAAAAAAABdEmQBAAAAAADQJUEWAAAAAAAAXRJkAQAAAAAA0CVBFgAAAAAAAF0SZAEAAAAAANAlQRYAAAAAAABdEmQBAAAAAADQJUEWAAAAAAAAXRJkAQAAAAAA0CVBFgAAAAAAAF0SZAEAAAAAANAlQRYAAAAAAABdEmQBAAAAAADQJUEWAAAAAAAAXRJkAQAAAAAA0CVBFgAAAAAAAF0SZAEAAAAwb1TVsVV1fVVtqKrTR10PADC7BFkAAAAAzAtVtSDJx5Icl+TgJCdW1cGjrQoAmE2CLAAAAADmiyOSbGit3dhauz/JeUnWjLgmAGAWCbIAAAAAmC+WJ7llwvnGYQwA2E0tHHUBAAAAADCTqmptkrXD6d1Vdf0o63kcz0zyg1EX8SSk76Oj96Oh76Oh77vu2Y83IcgCAAAAYL7YlGTlhPMVw9gjtNbOTnL2XBU1FVW1vrW2etR1PNno++jo/Wjo+2jo+8xyaUEAAAAA5otvJFlVVQdV1eIkJyS5cMQ1AQCzyDuyAAAAAJgXWmvbq+pdSb6UZEGSc1tr1464LABgFgmyAAAAAJg3WmsXJ7l41HXMgK4vfbgb0/fR0fvR0PfR0PcZ5NKCAAAAADDHhs/xYo7p++jo/Wjo+2jo+8wSZAEAAAAAANAlQRYAAAAAzKKq+khV/VNVXV1Vf15VSybM/WFVbaiq66vq1RPGjx3GNlTV6aOpfPeip7OnqlZW1WVV9e2quraqThvG96uqS6rqhuF+32G8qurM4XdxdVUdPtqfYH6rqgVVdWVVXTScH1RVlw/9/WxVLR7G9xjONwzzB46y7vmsqpZU1QXDf9uvq6qXeb7PHkEWAAAAAMyuS5L8YmvtkCTfSfKHSVJVByc5IckLkxyb5D8Nf5BekORjSY5LcnCSE4e1TJGezrrtSd7TWjs4yZFJTh36e3qSS1trq5JcOpwn47+HVcNtbZKz5r7k3cppSa6bcP7hJGe01p6bZGuSU4bxU5JsHcbPGNYxNR9N8sXW2guSvDjj/fd8nyWCLAAAAACYRa21v2qtbR9Ov5ZkxXC8Jsl5rbX7Wmv/nGRDkiOG24bW2o2ttfuTnDesZer0dBa11m5trX1zOP5hxv+ovzzjPV43LFuX5PjheE2ST7ZxX0uypKoOmOOydwtVtSLJa5N8fDivJEcnuWBY8ui+P/T7uCDJMcN6dkFV7ZPkV5KckySttftba9vi+T5rBFkAAAAAMHf+dZK/HI6XJ7llwtzGYezxxpk6PZ0jw+XqDktyeZJlrbVbh6nbkiwbjv0+Zs6fJHlvkgeH8/2TbJsQnk/s7cN9H+bvHNazaw5KMpbkz4ZLOn68qp4Wz/dZI8gCAAAAgGmqqr+uqmt2cFszYc0fZfwSbJ8eXaUwe6pq7ySfS/Lu1tpdE+daay1JG0lhu6mqel2Sza21K0Zdy5PMwiSHJzmrtXZYkh/lp5cRTOL5PtMWjroAAAAAAJjvWmuveKL5qvrNJK9LcszwB84k2ZRk5YRlK4axPME4U/NEvWYGVNWijIdYn26tfX4Yvr2qDmit3TpcSm3zMO73MTOOSvL6qnpNkj2TPCPjn920pKoWDu+6mtjbh/q+saoWJtknyR1zX/a8tzHJxtba5cP5BRkPsjzfZ4l3ZAEAAADALKqqYzN+6a/Xt9bumTB1YZITqmqPqjooyaokX0/yjSSrquqgqlqc5IRhLVOnp7No+Jylc5Jc11r74wlTFyY5eTg+OckXJoyfVOOOTHLnhEuyMUmttT9sra1orR2Y8ef0l1trb0lyWZI3DMse3feHfh9vGNZ719Auaq3dluSWqnr+MHRMkm/H833WeEcWAAAAAMyu/zfJHkkuGf97f77WWvvt1tq1VXV+xv8Auj3Jqa21B5Kkqt6V5EtJFiQ5t7V27WhK3z201rbr6aw6KslvJPlWVV01jL0vyYeSnF9VpyT5XpI3DXMXJ3lNkg1J7knytrktd7f3B0nOq6oPJrky4yFjhvtPVdWGJFsyHn4xNb+T5NNDMH5jxp/DT4nn+6yoHgLX1atXt/Xr14+6DADgCaxevTrr16+vUdeBvRMAzAf2TgAAM8OlBQEAAAAAAOiSIAsAAAAAAIAuCbIAAAAAAADokiALAAAAAACALgmyAAAAAAAA6JIgCwAAAAAAgC4JsgAAAAAAAOiSIAsAAAAAAIAuCbIAAAAAAADokiALAAAAAACALgmyAAAAAAAA6JIgCwAAAAAAgC4JsgAAAAAAAOiSIAsAAAAAAIAuCbIAAAAAAADokiALAAAAAACALgmyAAAAAAAA6JIgCwAAAAAAgC4JsgAAAAAAAOiSIAsAAAAAAIAuCbIAAAAAAADokiALAAAAAACALgmyAAAAAAAA6JIgCwAAAAAAgC4JsgAAAAAAAOiSIAsAAAAAAIAuCbIAAAAAAADokiALAAAAAACALgmyAAAAAAAA6JIgCwAAAAAAgC4JsgAAAAAAAOiSIAsAAAAAAIAu7TTIqqpzq2pzVV0zYWy/qrqkqm4Y7vcdxquqzqyqDVV1dVUdPpvFAwD0xt4JAAAAYOZM5h1Zn0hy7KPGTk9yaWttVZJLh/MkOS7JquG2NslZM1MmAMC88YnYOwEAAADMiJ0GWa21rybZ8qjhNUnWDcfrkhw/YfyTbdzXkiypqgNmqlgAgN7ZOwEAAADMnKl+Rtay1tqtw/FtSZYNx8uT3DJh3cZh7DGqam1Vra+q9WNjY1MsAwBgXrB3AgAAAJiCqQZZD2uttSRtCl93dmttdWtt9dKlS6dbBgDAvGDvBAAAADB5Uw2ybn/osjfD/eZhfFOSlRPWrRjGAACezOydAAAAAKZgqkHWhUlOHo5PTvKFCeMn1bgjk9w54TI6AABPVvZOAAAAAFOwcGcLquozSX41yTOramOS9yf5UJLzq+qUJN9L8qZh+cVJXpNkQ5J7krxtFmoGAOiWvRMAAADAzNlpkNVaO/Fxpo7ZwdqW5NTpFgUAMF/ZOwEAAADMnKleWhAAAAAAAABmlSALAAAAAACALgmyAAAAAAAA6JIgCwAAAAAAgC4JsgAAAAAAAOiSIAsAAAAAAIAuCbIAAAAAAADokiALAAAAAACALgmyAAAAAAAA6JIgCwAAAAAAgC4JsgAAAAAAAOiSIAsAAAAAAIAuCbIAAAAAAADokiALAAAAAACALgmyAAAAAAAA6JIgCwAAAAAAgC4JsgAAAAAAAOiSIAsAAAAAAIAuCbIAAAAAAADokiALAAAAAACALgmyAAAAAAAA6JIgCwAAAAAAgC4JsgAAAAAAAOiSIAsAAAAAAIAuCbIAAAAAAADokiALAAAAAACALgmyAAAAAAAA6JIgCwAAAAAAgC4JsgAAAAAAAOiSIAsAAAAAAIAuCbIAAAAAAADokiALAAAAAACALgmyAAAAAAAA6JIgCwAAAAAAgC4JsgAAAAAAAOiSIAsAAAAAAIAuCbIAAAAAAADokiALAAAAAACALgmyAAAAAAAA6JIgCwAAAAAAgC4JsgAAAAAAAOiSIAsAAAAAAIAuCbIAAAAAAADokiALAAAAAACALgmyAAAAAAAA6JIgCwAAAAAAgC4JsgAAAAAAAOiSIAsAAAAAAIAuCbIAAAAAAADokiALAAAAAACALgmyAAAAAAAA6JIgCwAAAAAAgC4JsgAAAAAAAOiSIAsAAAAAAIAuCbIAAAAAAADokiALAAAAAACALgmyAAAAAAAA6JIgCwAAAAAAgC4JsgAAAAAAAOiSIAsAAAAAAIAuCbIAAAAAAADokiALAAAAAACALgmyAAAAAAAA6JIgCwAAAAAAgC4JsgAAAAAAAOiSIAsAAAAAAIAuCbIAAAAAAADokiALAAAAAACALgmyAAAAAAAA6JIgCwAAAAAAgC4JsgAAAAAAAOjSrARZVXVsVV1fVRuq6vTZeAwAgN2FvRMAAADAjs14kFVVC5J8LMlxSQ5OcmJVHTzTjwMAsDuwdwIAAAB4fLPxjqwjkmxord3YWrs/yXlJ1szC4wAA7A7snQAAAAAex2wEWcuT3DLhfOMwBgDAY9k7AQAAADyOhaN64Kpam2TtcHpfVV0zqlp2E89M8oNRFzGP6d/06N/06eH06N/0TaaHz56LQtgxe6cZ5b8Z06eH06N/06eH06N/02fvBAAwR2YjyNqUZOWE8xXD2CO01s5OcnaSVNX61trqWajlSUMPp0f/pkf/pk8Pp0f/pk8PR8reaY7p3/Tp4fTo3/Tp4fTo3/TpIQDA3JmNSwt+I8mqqjqoqhYnOSHJhbPwOAAAuwN7JwAAAIDHMePvyGqtba+qdyX5UpIFSc5trV07048DALA7sHcCAAAAeHyz8hlZrbWLk1y8C19y9mzU8SSjh9Ojf9Ojf9Onh9Ojf9OnhyNk7zTn9G/69HB69G/69HB69G/69BAAYI5Ua23UNQAAAAAAAMBjzMZnZAEAAAAAAMC0jTzIqqpjq+r6qtpQVaePup4eVdW5VbW5qq6ZMLZfVV1SVTcM9/sO41VVZw79vLqqDh9d5X2oqpVVdVlVfbuqrq2q04ZxPZykqtqzqr5eVf849PADw/hBVXX50KvPVtXiYXyP4XzDMH/gKOvvRVUtqKorq+qi4Vz/dkFV3VRV36qqq6pq/TDm3/EkVdWSqrqgqv6pqq6rqpfp3/xj3zQ59k7TY+80ffZOM8PeaXrsnabH3gkAoB8jDbKqakGSjyU5LsnBSU6sqoNHWVOnPpHk2EeNnZ7k0tbaqiSXDufJeC9XDbe1Sc6aoxp7tj3Je1prByc5Msmpw/NMDyfvviRHt9ZenOTQJMdW1ZFJPpzkjNbac5NsTXLKsP6UJFuH8TOGdSSnJbluwrn+7bqXt9YOba2tHs79O568jyb5YmvtBUlenPHnov7NI/ZNu+QTsXeaDnun6bN3mhn2TtNn7zR19k4AAJ0Y9TuyjkiyobV2Y2vt/iTnJVkz4pq601r7apItjxpek2TdcLwuyfETxj/Zxn0tyZKqOmBuKu1Ta+3W1to3h+MfZvx/QJZHDydt6MXdw+mi4daSHJ3kgmH80T18qLcXJDmmqmqOyu1SVa1I8tokHx/OK/o3E/w7noSq2ifJryQ5J0laa/e31rZF/+Yb+6ZJsneaHnun6bN3mj57p1nj3/Ek2DsBAPRl1EHW8iS3TDjfOIyxc8taa7cOx7clWTYc6+kTGC4zcliSy6OHu2S4tMtVSTYnuSTJd5Nsa61tH5ZM7NPDPRzm70yy/9xW3J0/SfLeJA8O5/tH/3ZVS/JXVXVFVa0dxvw7npyDkowl+bPhEk0fr6qnRf/mG7+X6fF8nwJ7p6mzd5o2e6fps3eaOnsnAICOjDrIYga01lrG/yeFJ1BVeyf5XJJ3t9bumjinhzvXWnugtXZokhUZf1fAC0Zc0rxRVa9Lsrm1dsWoa5nnfrm1dnjGL91yalX9ysRJ/46f0MIkhyc5q7V2WJIf5aeXwkmifzy5eL5Pjr3T9Ng7TZ2904yxd5o6eycAgI6MOsjalGTlhPMVwxg7d/tDlyoY7jcP43q6A1W1KON/iPl0a+3zw7AeTsFwSY3Lkrws45fMWDhMTezTwz0c5vdJcsccl9qTo5K8vqpuyvilwI7O+DX39W8XtNY2Dfebk/x5xv8o6N/x5GxMsrG1dvlwfkHG/zijf/OL38v0eL7vAnunmWPvNCX2TjPA3mla7J0AADoy6iDrG0lWVdVBVfX/t3f/rjqGYRzAv1d0Iin5sUmy2GQ0GE6JJKN0ipzO/2BhUcpqMmJRlMWPP4DBqgzEpmRhURZlugzPIyed4c2r3ud0Pp/pfp/nHe6u3vvt23M93fdSkpUkzxc8p83ieZLVcbya5Nm661dqcCLJ93VbH2xJ4/7495J86O7b626p4Yyq6kBV7RnHO5OcznBexsskF8av/V3D37W9kOTF+MbiltTd17r7YHcfzvA/96K7L0X9ZlZVu6pq9+9xkjNJ3sU6nkl3f0nyuaqOjpdOJXkf9dts5Kb5+L3PSHaan+w0H9lpfrLTfGQnAIBpqUXn+6o6l2H/821J7nf3rYVOaIKq6lGS5ST7k3xNciPJ0ySPkxxK8inJxe7+Nj54uJPkbJIfSda6+/Ui5j0VVXUyyaskb/Nnj/3rGc56UMMZVNWxDIcZb8vQAH/c3Ter6kiGt2T3JnmT5HJ3/6yqHUkeZDhT41uSle7+uJjZT0tVLSe52t3n1W92Y62ejB+3J3nY3beqal+s45lU1fEkd5MsJfmYZC3jeo76bRpy02xkp/nITvOTnf4f2enfyE7zk50AAKZj4Y0sAAAAAAAA2MiitxYEAAAAAACADWlkAQAAAAAAMEkaWQAAAAAAAEySRhYAAAAAAACTpJEFAAAAAADAJGlkAQAAAAAAMEkaWQAAAAAAAEySRhYAAAAAAACT9AsFlQyKva58VgAAAABJRU5ErkJggg==\n" - }, - "metadata": {}, - "execution_count": 3 - } - ], - "source": [ + "filename = os.path.join(\n", + " os.path.dirname(os.path.abspath('.')),\n", + " \"camelot/tests/files\",\n", + " pdf_file\n", + ")\n", "\n", - "PLOT_TYPES = [\"text\", \"textedge\", \"network_table_search\"]\n", + "# Set up plotting options\n", + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", "PLOT_HEIGHT = 12\n", - "plt.rcParams[\"figure.figsize\"] = [PLOT_HEIGHT * 2.5, PLOT_HEIGHT]\n", - "fig, axes = plt.subplots(1, len(PLOT_TYPES))\n", - "fig.suptitle('Side-by-side Flavor Review')\n", - "tables_list = []\n", - "flavor = \"network\"\n", - "timer_before_parse = time.perf_counter()\n", - "tables = camelot.read_pdf(filename, flavor=flavor, debug=True, **kwargs)\n", - "tables_list.append(tables)\n", - "timer_after_parse = time.perf_counter()\n", + "def init_figure_and_axis(title):\n", + " fig = plt.figure(figsize=(PLOT_HEIGHT * 2.5, PLOT_HEIGHT))\n", + " ax = fig.add_subplot(111)\n", + " ax.set_title(title)\n", + " return fig, ax\n", "\n", - "if len(tables):\n", + "# Utility function to display tables\n", + "def display_parse_results(tables, parse_time, flavor):\n", + " if not tables:\n", + " return\n", " tables_dims = \", \".join(\n", " map(\n", " lambda table: \"{rows}x{cols}\".format(\n", @@ -146,87 +78,24 @@ " ), tables\n", " )\n", " )\n", - " print(\"Found {table_num} tables ({tables_dims}) in {parse_time:.2f}s\".format(\n", - " table_num=len(tables),\n", - " tables_dims=tables_dims,\n", - " parse_time=timer_after_parse - timer_before_parse,\n", - " ))\n", + " print(f\"The {flavor} parser found {len(tables)} table(s) ({tables_dims}) in {parse_time:.2f}s\")\n", " for table in tables:\n", - " display(table.df)\n", - " for plot_idx, plot_id in enumerate(PLOT_TYPES):\n", - " ax = axes[plot_idx]\n", - " fig = camelot.plot(table, kind=plot_id, ax=ax)\n", - " ax.set_title(\"{flavor} - {plot_id}\".format(\n", - " flavor=flavor,\n", - " plot_id=plot_id,\n", - " ))\n", - "\n", - "timer_after_plot = time.perf_counter()\n", - "fig\n" + " display(table.df)" ] }, { - "cell_type": "code", - "execution_count": 4, + "cell_type": "markdown", "metadata": {}, - "outputs": [], "source": [ - "tables = camelot.read_pdf(filename, flavor='stream')\n", - "fig = camelot.plot(tables[0], kind='text')\n" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": "
", - "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiAAAAKrCAYAAADI/jYHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdeXwUZbrw/V/1nn3tJJCQhB1klxg2EQQXQARUdj2jHmZUFEbHZY5zjvOcM+eZd97neWd7zszR2fQZcEEUHMEFkYCETQIEEpZAEggkZE86+9JJL1XvH500REBASXcg1/fz4UOnurpy9XVXda6uqvu+FU3TEEIIIYTwJZ2/AxBCCCFE7yMFiBBCCCF8TgoQIYQQQvicFCBCCCGE8DkpQIQQQgjhcwZ/BwAQHR2tJScn+zsMnzhcchx0Dn+HIYQQ4gYz6U2Mih3l7zB6lMLCQmw2m3K553pEAZKcnExmZqa/w/AJ5RcK2r9f2vVZUUB6RAshxM1L+YVC5r/3jr9l1yolJeWKz8klGCGEEEL4nBQgQgghhPA5KUCEEEII4XNSgAghhBDC56QAEUIIIYTPSQEihBBCCJ+TAkQIIYQQPicFiBBCCCF8TgoQIYQQQvicFCBCCCGE8DkpQIQQQgjhc1KACCGEEMLnpAARQgghhM9JASKEEEIIn5MCRAghhBA+JwWIEEIIIXxOChAhhBBC+JwUIEIIIYTwOSlAhBBCCOFzUoAIIYQQwucM/g6gt9E3JaH8Qrn0if8A5Rc+D0cIIcQNkhSW5O8QbipSgPiY6zeF/g5BCCGE8Du5BCOEEEIIn5MCRAghhBA+JwWIEEIIIXxOChAhhBBC+JwUIEIIIYTwOSlAhBBCCOFzUoAIIYQQwuekABFCCCGEz0kBIoQQQgifkwJECCGEED4nBYgQQgghfE4KECGEEEL4nBQgQgghhPA5KUCEEEII4XNSgAghhBDC56QAEUIIIYTPSQEihBBCCJ+TAkQIIYQQPicFiBBCCCF8TgoQIYQQQvicFCBCCCGE8DkpQIQQQgjhc1KACCGEEMLnpAARQgghhM9JASKEEEIIn5MCRAghhBA+JwWIEEIIIXxOChAhhBBC+JwUIEIIIYTwOSlAhBBCCOFzUoAIIYQQwuekABFCCCGEz0kBIoQQQgifkwJECCGEED5n8HcAvY2maf4OQQghRA+gKIq/Q/ArKUB8bP369TQ0NGA0Gv0dSq/U2tpKfX09ffv29XcovdbZs2dJTk5Gp5MTsP5QX1+P0+nEarX6O5ReSdM0WlpaWLVqFXq93t/h+JUUID6Wm5vLU089RWxsrL9D6ZVycnLYtWsXjz/+uL9D6ZU0TePVV19l8eLFBAUF+TucXik9PZ3q6moWLVrk71B6JZfLxauvvoqqqlKA+DuA3kiv12MwSOr9QafTodPprin/F18uu/hU6Tcvo3U+d6X1r/a63kRVVRRFkWPAj3Q63ffK/+X28xu5b1/uMvW3ba9z/W+uc7Xj0V80TetR8fiTfAL0APv3a1RVOThz5jT9+w8gMDDQ+1x4OEyc6MfgeoGMDKir06iqqqKkpAS9XsfAgYNQVZXt27fz0EMPodN5PjDcbhebNm1GVVUiIyNITu7PwIEDO55T+fjjf3D//bMICQm55PcUFhZSUOC5/FBcfJ7p0+/2PldUVITb7WbAgAFA72v3/fs1ysvtnD1bwODBQzCbzUDvy4O/7N+vkZV1jvj4vpjNFmpra3E6HcTGxnVZT9M0MjMzOXo0m/nzF3gv42RkZBASEkpDQwNRUZEMHTrsir+roKAAo9FIYmLiZZ9vaGhk+/btzJgxg507d7JgwQLv8VdbW0txcTGjR4/2/hE/fvwEbW1t3HHHHV22c/bsOdLStjFz5kwGDRos+1IPJBdhe4CKijY++eQt/vKX/wenswyrFe+/+np/R3frq6vTKCjI4J13fofbXUF7eynHju0gOLiVc+cOEhnpJjzcSXS0BtgoKTnCD34wi5qaPDStirAwB1FRKtHRGgUFBwgJaSM0tJ3oaA2rFaKjNUJD2wEblZUngCqqqk4SEeEkIsJFdLRGdLRKVJS717b7+fMNfPTRn/nrX3+F2dzYa/PgL3V1Gp9++hZQjdUKRUWZZGenER2tERHhIizMQXS0RmSkm6+/3sTy5fcxdGgkUVEqYWEO6uvP4HCUUlubh8NR5j0mLt7/v7mvR0drhIU5iIhwdiz3/BwU1MrZswcIDGzh3LkDREVdOP6sVoiIcHXZrt1+nsbGgku2d/Dg59x33+2kpCTLvtRDyRmQHsBoNPDoo49SVVUFSC8ZX3M42vnwww95/vnnSUpK8p66raqqorq6mj//+c9UVFSwcuUz7Nq1m9zcPNLT09E0jZ07d7J161YGDRrE0qVLcTqdfPDBB9hs1UybNp2pU6eyceNGzpw5jcvlIjw8AoC8vDx+97vfo6puVq1aTVNTM1VVVQwaNNifqfCbgIBAVqxYQVlZmb9D6bVUVaOtrR273Y7D4UDToLKygg8++JCmpkYslgDuvHMKJ06c4NNPP2H58kdZt24d9fX12GzVzJnzAAB79+5lz549JCQk8Pjjj7Nv3z4OHTpEQ0MDEyakEhfXh7Y2Oy6Xi08++ZTQ0FAeffRRDhzIYM+evRiNBlwuFwDV1TbeeONPVFZW8uyzz2IwGMjPz2fUqFG8/fbbVFSU09zczNix4ygoOOPd3owZM8jIyKC2tpbk5GRiYmL8mVpxBXIGpAcwGIyEhob6O4xeq62tDU3TiI+PZ/v27fzud79j7dq1aJqGpmksXLiQyZMnk56ezoQJExg0aBD33HMPAH379uXFF18kOzubhoZ6VFXljjvuYNWqVXz66acUFp4jLy+PF198qUtxYTabeeaZZzCbLeTmnqK6upqioiJ/pcDvTCaT3JTqZw5HO7/+9a/52c9e5f333wdg+/bt3H777TzyyEI0TWPMmLEkJSXzyCMLycvLw2Kx8JOf/MRbWAPExMTw4osvkpeXR3l5Odu2beNHP/oR8fF9iYmJpaKigpKSUvbs2cuQIYNZtGgRbrebbdvSePbZZ5k69S5U1Q14LvksXryY1NRUdu/ejd3eyqlTpzh9+jRNTU28+OJLxMX1ATyFT+f2+vXrx9ChQ5k/fx5RUVG+T6a4JlKAiF7PaDThcrloaKhn2rRpLFmyhJycHDRNIyYmhpiYGMLDw2lubsZkMmEw6DGZzCiKwtChQwkODkav1+N0ujCbzQwcOICwsHA0TaO0tIygoEACAgIYOnSo97p1cnIyoaGhhIQE09LS6ucMCAEmk5lXXnmZX/3q/2XZsqUAREZG8eWXW/niiy9ISUnBaDSg1+uxWCyUlJQQGxtLYGCg9z4ogCFDhhAUFITRaMTtdqMo8O6771JbW0dycrJ3vQcffJDS0jJ+97vfUV5ejsPRTlhYKAMHDsRk8twDFBNjJSYmhoiICJqbm72vLS8vIyIigoCAAAYPHtyxvXmUlpbx29/+lqamJgwGAxaLpdf3NOnJpADpAVwuJ0VFRTQ3N1NaWtblQBPdLyDAc2r5//yf/6KgoIDCwsLvPGBca2sru3btJiMjA71ez5AhQygpKSEvL5ddu3ahaeoNjv7W0N7eTlFREa2trRQXF9PWZvd3SL2OoihYLBYCAwO9BUBtbS0xMbH079+fhIQELj4shg8fxsGDB8nPz+fgwYOX3abL5URVNcLCQhk/fjwmk8n7XHNzMzNnzqStrY329nb0egNZWdns2rULu/3b23/QoEHk5ORw+vRpvv76awCampqYOXMmDkc71dXV3zMbwhfkHpAewOl0cfjwYUaPHk1paSn9+/cnODjY32H1GoqisHDhQhITk8jKykKnU/jRj35IaGgos2bNQlEUkpKSCAwMJCwsjHvvvQ9FUZg4cSKxsbEoisLs2bMJCQnm4YcfQtOgtLSEVaueIy4ujqVLl5KVlc3YsWMJDw+jT5++GI2eD+KUlDuIjIwkPz/f2/OjN2pra+Pw4UwmTpxIfn4e/fr1w2IJ8HdYvYaiKNx7772EhoYBMHjwYPr06cPevXtJSkoiIiKCP/7xj/znf/6CBx54gIAAC8OGDWPKlMkcPXqUuXPnMnjwYOLi4ggNDfVuz2z2nIHo338ARUVFrFmzhoEDB2I2m6mvr+fUqVPMmDGDYcOG8uSTT3LkyBGsVivz588nLCzMe/x5zhiG4HarmExG+vVLZPbs2Rw5coTp06cTHx9PQ0MDJ0+e5O67ZzBw4ACmT59OdLQMttaTSQHSAwQEBPDII4/4O4xezWAwMnnyZCZPntxl+d13e7rKJiQkkJCQAMC0adMAGD9+/CXr3XPPvZdse+LESUycOKnLsvj4eADGjh1LUVERO3bsYNmyZTfo3dx8wsLCWLJkib/D6LUURWH69Onen/v374+qqnz99decO3eO6uoqhg4dSkBAIDNnzvSuN2vW7Ctuc/r06dTW1qKqKqdOnaKlpYXg4CD27NnDihUrGDp0KGPHjvWuP2zYMIYNG/aNbXiOq8TEREJDQ/nLX/7C6NFj0Ol0zJgx45LfOWbMGO/jbx7LoueRAsTHXC4XJ0+epKKiwrusoCCY2lr3Zdevq9OTnS2XZG6UgoICSktLyc7OvmjZlfPvCw6Hg7lz52IymcjLywNu7Xavrq7m+PHjBARcOMNxpTa4lfPgLwUFBdTV1V3TMTB16lRqa2sBjYiISAoLC6/79y1atJDGxiZMJhMWi4XbbhuBpmneff1aud1upkyZQkREBPn5+dcdR0/Zl9xuN62tct8XSAHicy6Xi0OHDnXp9VJYGMOpU6bLrh8Q4ECnq/JVeLe8srIyzp49y/79+73Lvi3/vlXrfXSrtrumaZSVlXHgwIEul5yu1Aa3ah78KS8vj+bm5i6D5V3bMXAjB9Ko+R6vrftOr+op+5Lb7aapqcnfYfQIUoD4mMVi4fHHHycuLu7qK4sb7vjx4+zatYuVK1f6O5ReSVVVzp49yw9/+EO5z8lPvvrqK2w2G4sXL/Z3KL2S0+mkoKDA32H0CFctQBRFGQp8cNGiAcD/AN7uWJ4MFAKLNU2rUzz9DP8LmAO0Ak9omnbkxoZ969A0ja+/Vmls1KEoCpqmoaoqOp3uqvMflJWVEhMTe8WZdTVNo6KigsjICMxmS5fnZFjiCzIyoKbG7c25qqre+RqcToe3y63krPvs369RW6t6Z8jtPAYcjnYMBiN6vV7y340uzn/nMQCezxCXyynHgOgWV+2Gq2lanqZpYzVNGwuMx1NUfAy8CuzQNG0wsKPjZ4DZwOCOf08Bf+qOwG8lb7/9CZWVJ7BaISpKZdOmv6Ioti5Dsn/zX2Skm/ff/yMmU/23rrdp099wOMouWS7DEl9QXw/bt6+jqelsR25Ok57+IW53Bdu3r/cOAS056z4nT5axZcta7769YcMbmEz17NjxAW53heS/m9XXez4rOodiLyw8RFbWlzQ0nCEj41P53BDd4nrHAZkJFGiaVgTMB9Z2LF8LLOh4PB94W/PIAMIVRelzQ6K9RcXGxrJjxw40TaO2tpbCwkJCQ0MpKCjgiy++IDs7m5KS4o6h2j1982tqanC7XZSUlPDll19SX1+PpmmcP3+eLVu2kJ2dRX19Parqpqqqkq1bt1JdXf2dx7e41ZWWlnlvDGttbaW8vIKoqCjuvHOKzFzpA+3t7ZSWlnp/LioqxOVyM23aXYSFhfkxst5B0zSKi4txONoBaGhooLraRkJCAikpKX6OTtyqrrcAWQq83/E4VtO08o7HFUBsx+N4oPii15R0LOtCUZSnFEXJVBQlszcPGqMoCiNHjqSkpJiWlhaysrIYM2Ys1dVVrF+/nuDgYF5//XXy80+zZs0a3G4369a9R1FRES0traSnp1NZWcnf//53bDYba9euJTw8nNdff4P6+nqcThdpadtpamri9ddfx+32X2+PnkzTVHbs2MGGDRvYuXMnqqpSV1fHm2++5T0dLbpXUVERGzZsYOPGjdhsNgA+/HBDrx6i3pecTidbtnzBhg0byMjIAKC0tJR1696/yiuF+G6uuQBRFMUEzAM2fPM5zfO1+rq+Wmua9ldN01I0TUvpnNK5twoJCaFfv0ROnTrFkSOHmTp1Kq2tdhRFISYmBqvVSmrqHdTW1nD+/HlKS8sYNmwYgYGBLF26jAceeICSkhJaWlpwu13ExsYSFRWJ1WrFaDSwZMkS5s6dS319HQ6Hw99vt4dSsFjMWCwWTCaT96yHnDHyHb1eT0BAAAEBASjKhXtBpA18Q1EUzObOY8BzX5nnnjT50iK6x/X0gpkNHNE0rbLj50pFUfpomlbecYmls39TKdDvotcldCwTV6AoCpMnT+bTTz/FYDAQFxdHTk4Odrud/fu/5sknnyQoKJiRI0fywQcfMHjwYAIDA1EUBYNB7/1j6RnS2MGuXbv4p3/6gXdyL5kL4eoURWHKlDsZNWoUWVlZpKen+zukXichIYG5c+fidrvZs2e3v8PpdQwGAzNnziAhoR9ms5nKysqrv0iI7+F6LsEs48LlF4BPgMc7Hj8ObL5o+Q8Uj4lAw0WXasQVDB8+HJvNxu23j0Ov12M2m6irq6Omppb33nuP6upq7rprGvn5+Uye7BlVMzw8HJ1Oj06nEB4ejslkoqmpkbq6Oj788EOKi4sJDQ3DYDCgKJ715X6GywsNDcVo9NTjRqORkBDpIupLBoOhy7gU4eHh3sJZ9lnfCAsLQ6/3HAOdc8II0Z2u6QyIoihBwL3A0xct/l/Ah4qirACKgM5O5VvwdME9g6fHzJM3LNpbWFBQEL/97W87igWFY8eOM3nyZO666y7ee+89ysrKGDNmDH/4wx+8Zz9eeukl72BOL730Ert372LMmLHMnj2bjz/+mPPnz/PssysxGk3odDp++tN/wWKxXCWS3unJJ5/AYPCcdh42bBj9+/cnJycHqzXa2zVUdJ/4+Hieecbz8aLX63nppZex2+00NzcTERFxlVeL70tRFFavXu2dLG7SpEk4HA727dtHnz59/RyduFVdUwGiaVoLEPWNZTV4esV8c10NeO6GRHcLu/i6dufDzuJA0zRmzpzJtm3bSEtLY+LEiYwcOQLAe1nl4vXBM5/MpEmTaWz8krS0NIYPH05qamqXMUI6h77WNA1Ng958af2b+e8cJ0XTNPR6PZqmkZ+fx4MPzvMu7+05u5E8+byQTJ1O12WsGovFwpEjR0hJSSEmxir5v4E6c//Ne2su/vwxGAw0NjZSVlbGfffdd9HrpA2+L7mn6QKlJyQjJSVFy8zM9HcYPvHyy55vdhef3jx3bggBAS0+jcNuD6J//+ufT+FmZ7PZKC4uZty4cd5l15r/3pqzG23Xrl1Mnjy5S3F8LW0g+b8xzp8/j91uZ+jQod5lcgz4jqqqFBYWsn79+isOInkrSUlJITMz87LXUWUodh8LDAxk5cqVxMTEeJcdPKijocG317nDwjRSU3tf99KTJ0+yZ88enn76wtXEa81/b83ZjaRpGu3t7bz66qtdzuZdSxtI/m+MXbt2UVNTw8MPP+xdJseA7zidTv7jP/7D32H0CFKA+JiiKAQFBXW54W7mJReyRHcJDAzEYrFI/v1EVVVMJhPBwcFd5oKRNvCdwMBAWltb5RjwE6fTKT0TO0gB0gOkp7eRnX2OoUOHAXD69GkSEhLIz8+jT5++xMZ6xniTeRi6R0YGHD5cgNVqJTQ0lIaGBmpra4mMjCA3N5fU1AkyD0Y3S0trIi+vgoEDB3mnah8woD/Z2UcZNmwoYWHhkv9utH+/xsGD+SQmJhIQEEB1dbV3Hp6ysjLGjh0rx4C44eT2/h6guLiJTz/9O1FRKlYrbNv2HppWSUKChbg4nczD0M3q62H37o9obS3CaoWmprPs27eJuDg98fFmyb8PnD5dzfbt673zIX3yyZtYLM0kJJiJidFJ/rtZXZ3GF1+8jU7nmYOqpCSL48d30qePgfh4kxwDoltIAdJDuFwumpubaW5uxul0AlBYWEh5eYWfI+sdNE2jtbWVpqYm75wwTqeLw4cPy13rPuJ0Or3HgMvlGX0zLy+P2tpaP0fWO2iaRkuL5xhoa2sDwG5v5ejRo36OTNyq5BJMD3Hu3Dn+/d//R8fjQgBKS0u63Kgnuo+qqvz1r38lJCSYhoZGRowYQXt7O6dPn5YCxEeOHj3Kz3/+GpoGxcWe6aTOnTvHiBEj/BxZ7+BwtPP73/8Oi8WCzWbj/vtn0dLSytmzBf4OTdyipADpIQYOHMD//J+/RFEUfvnLX/o7nF5Hp9Px3HPPMWLECI4ePcq+ffv8HVKvM27cOH72s5/hdrt57bXX/B1Or2MymfnpT58jPj6eHTt2UFNT4++QxC1OCpAeQlF0mEyeEUtl5E3/MBqNmM3mXtE3vyfS6/WYTCbcbjc6nQy/7muKomAyeY4Bg0H+NIjuJ3tZDxAcHMyCBQu8c17MmTOHyMgoVFXzDo0sutc999xDnz59AM+kaHffPd3bZVTmIul+UVFR3H///YDnbNSCBQu8lx/lGOh+iqIwd+5cwsPDAc90BImJibjdbpm+QXQb+ardAwQEBDBlyhR0Oh2KojBx4kROnz5Nfn4+AwcO9Hd4vcL48eOJjo4GwGq1MmjQYN5//31Gjx4tBYgPhIWFkZqaiqIo6HQ67rxzKgcOHKC+vo6+ffv4O7xbnqIoTJo0ieBgz9ggiYmJWK1WPvroI8aNu93P0YlblZwB8TGXy9OzIjIy0rvs5MkwIiJcl6z30EMPUV5eTnm5ZzLhujoDYWENPo33VnP27FnOnTvH/v37vcsul39VVbnjjjsIDg7m+PHjgOT/RikvL+fgwYPeuYng8m1gsZiZP38BZ8+eAyT/N8rJkyepr6+/6jHgdruZNm0aoaEhcgzcQG63m+bmZn+H0SNIAeJjbrebM2fOEBYW5l1WWxtNScmVTjNfmJ8hMNBBXp6tmyO8tZWUlFBVVUVeXp532bfnv837SPL//WmaRm1tLadPn/bO5AxXa4MmQPJ/oxQXF9PU1CTHgJ+43W7sdru/w+gRpADxMbPZzJIlS4iLi/N3KL3S8ePH2bVrF0888YS/Q+mVVFUlJyeHRx99tMtQ7MJ3vvrqK2w2G4sXL/Z3KL2S0+nkxIkT/g6jR5ACpAfYv1+jpsaFXu9pDrfbhU6nx+l0oNfrMRg8vTJkGOTukZEBNTUuFMXTA0lVVTRNBRTa29sJCAiQYai72TfbAGR/96WLP4MURcHtdgOe8W+cTidms0WOAXHDyU2oPUBhYT0ffPDf3qHYN216E5ernIMHt9DQUCDDIHez+nrYuvUdmpo8ua6ry2P79vWoaiXp6RuIjtYk/92svh527PiAmppc2d/9oK5O46OP/oyqVmK1wrlzB8nM3EpDQwEHDnwubSK6hZwB6QFcLhelpWXen8vLy3E6HaSkpMhpah+prKzCbu8cfrqN6upqIiMjmTAhVXrB+Eh1dbV3GHzhe+XlFbhcnmkgmpqaqKurIz4+Hr1evqeK7iF7Vg9RUVHBO++8w9tvv83580UAbNu2jZycHD9H1jtomsqWLVtYu3YtW7duRVVV6uvrWbNmDaqq+js8Ibqd0+nkH//4mLVr17J79y4ASktLWb/+Az9HJm5VcgakhzCbzcTHx6MoYLF0dk/UZB4Sn1GwWq3Ex8fjdDpobPT0vJD0i95CURRiY2OJiorCZru4p4scBKJ7SAHSQ0RERDBjxgx0Oh27d+/xdzi9jqIo3HHHHYwaNYqsrCzS09P9HVKvoWkaLpcLTdNkGgI/MhgMTJkymYSEfqiqSmVlpb9DErc4KUB6AL1e7x2FEyAyMlLmYvCxiIgI75DfJpPJOyS16H5tbW28996HNDXV079/f3+H02td/LkTGBhASEiInyMStzr5K9cDhIeH88ILL3i//a1cuZLW1lYqKiqZOvUuP0fXOzzxxBPo9XrAMw/GgAEDOHz4MLGxsfKtvJtZLBaWLl2C1arIvC9+oigKq1at8k7EOHHiJNrb29m5cyfx8Ql+jk7cqqQA8QNN0y65sdFoNHrv9zAajRQXFzNy5AiSkpK866qq55/47jRNuyT/qor3m5+qqt5xEEpLS5k/f/5Fr5H8f18X5//iNjAaTRiNF54H2d+7y+Xyr2l4iw9VVdHpdLS3t9PU1MT9998vx8AN5BlnSO6rAVB6QiJSUlK0zMxMf4fhEy+//DLNzc3emT4BysoSaW8P+JZXeZjNdvr2Pd+d4d3ybDYbxcXFjBs3zrtM8u87mqaxe/duJk2a1OVsx+XaQPLdPc6fP4/dbmfo0KHeZXIM+I7b7aa4uJj169d7i75bWUpKCpmZmZcdy0DOgPhYUFAQq1atIjY21t+h9Eo5OTns2bOHZ555xt+h9EqapvGv//qvvPbaa12KcOE76enp1NTU8Mgjj/g7lF7J6XTy85//3N9h9AhSgPiBxWLpMhOo8B2z2YzRaJT8+4mqqhgMBjkG/MhsNmMyma45/52XDDoH5JN7or4fg8EgOewgBYifaZrGm2+eIDS0H2Fh4WiaxsmTJ0lOTiIoKFjmXvABzzwkbnJzc6mqqiI0NJTRo0djNBol/z6ybVsDX311BE2DyMgIhg0b7p0tV9qg+3XOxXPmzBnKysoxGg2MGjWakJAQPvlkM7W1dQwY0B+z2cKkSZMAz2fX0aPZREREkpSUJO0krpuUYT3AwYP5ZGWlER2tERxs5/PP1xAR4Za5F3ykrk7j8OGtfP31ZpKSAqmqykHTqiT/PnTmTA379m0mOTmIM2f2s2nT3wgPd0ob+EhtrcrevR+Tnr6RxMQAwsNdlJQcITCwhby8vaxcuRCjsQGHo5TAwBZv2wwaFE5iYoC0k/hO5AyInymKQmpqKh9++DoPPbSAM2fOEBsbS2hoqL9D6zUcDgdpadt49dVXiYvrQ2pqqr9D6pWioqK44447uP32cbz22mucP3+egQMH+jusXqGpqZH09F388pe/JCQkBE1T0en0pKWlkZ9/mk2bNhEcHMy+ffvIzc1Fr9fzk5/8hIKCMwQHBxMTE+PvtyBuQnIGpAfo27cPJpOJ0tIyMjIymDFjhr1/crEAACAASURBVEyA5kNtbXZUVSMiIhLwFIWSf/8xGIxER0fT0tLi71B6jaamJsLCwggJCWHTpk387//9//HOO++QmprKgAH9WbRoETqdjuTkZF555RXa29spKSmmutpGbW2dv8MXNykpQHoAnU5PSkoKu3btori4mGHDhvk7pF7FbDbjcrmoq6sFuo5FIXzP5XJSW1snM0H7UEhICA0N9TQ1NTF//nweeeQRzp0713GzpOIdpC8+Ph6TyYTZbMbhcPo3aHHTkwKkB1AUhZSUFLZs2UJ8fF/pHeBjZrOFu+66i7fe+r9kZmby/vvvU1ZW5u+wep26ujqysrJYu/ZtEhISSExM9HdIvUZISCh33JHKb3/7W7Kzs8jOzsZg0Ps7LHGLk3tAeoi4uDh+/OMfk5iYKKf/fUxRFB555BGOHTtGRUUFQ4YMwWq1+jusXiU6OpqZM2dSXl5OamoqQ4cOlfmQfEin07F8+XJOnDhBWVkZkZGR/PCHPyIgIIBly5ah1+sZN26c98zgnDlz6Nu3D0eOHMZisfg5enGzkiO8h9DpdEyePNnfYfRaRqOR8ePH+zuMXis0NJQHHnjA32H0akajkXHjxnUZJRhgwoQJACQlJXmXjRkzhmPHjnHs2HFmzJjp0zjFrUMKEB9zOp3s27ePyMhI77KjRyMID7/89dT6eiNms9zkdaOcO3eO/Px8du7c6V0m+fcdTdMoLi5m9+7dXS41Shv4TnZ2Ng0NDdd8DFxJe7uDOXPmUFpaSllZqbTTNXK5XDQ2Nvo7jB5BChAfU1WVmpoa3G63d5nT6aaw8PJzAgQFOamurvVVeLe82tpampubqa6u9i6T/PuOpmm0trZis9m6nLqXNvCd+nrPzabXegx8OwWbrRWQdrpWLpcLp1Nu4AUpQHzObDYzb9484uLi/B1Kr3T8+HEsFguLFy/2dyi9kqqqHDp0iIcfflh6ufhJdHQ0NptNjgE/cTqdHDp0yN9h9AhSgPQAX3+tYrO5vDMjOp1ODAYDdrsdo9FIVVUlISEhhIWFX/JaGf74+8vIgKoqB6rqRlF0mEwm743Akl/fyMiA6monOp2O0tJSIiIiCAkJATxFS0FBAcnJyd5jpL29jZKSYgYMGHTJTdvSZtdv/36N6mqnd54St9vV0R0dHI52AgODUBRFcituKOmG2wMUFtazbt1/ERWlYrXCRx/9GaezlOzsbTQ3n+PAgc+pqjqJ1col/2T44++vvh4+/3wNf//7r1m79jdkZW0jOlqT/PpQfT2kpa3DZjtFevoGGhsLvPt4ZKSbjRv/RGBgi3eZTlfL5s3/19tOckx8P3V1Ghs2vI6mVWK1wpkzGRw8uIXm5nMcObJNciu6hRQgPYDb7aaqqsr7s81mw+VyMWbMWKKiIgGNyspKNm7cyKlTp2SQrG5QV1fHggULePzxH5CWltblHh3hG3V1dbS1taFpGmVlZXzwwQecOXMaTdNQVTcnT55kw4YN2Gw2wDOE/t69e/nss09pa2vzc/Q3v+pqz+cOQGtrK42NjfTp04fbbhvu58jErUoKkB6irKyMv/3tr/zlL3/h7NmzAOzYsZ2TJ0+haXDgQAZJSUm8+eabXYoVcWNomsrmzZt59933uO2227wjPwrf0zSNgwcPEBsbw5///BccjnaamprJz88jNDSUN954A7fbTWFhIS0tLeTm5rF37x5/h33TczgcvP/+ev785z+zfft2wPO5tHHjR36OTNyqpADpIYKDgxk5ciQjR44kLCysy3OKAnPnziUlJYXExESKi8/7KcpbmcKAAQOYOHEiJ06coKamxt8B9VqKojBv3nzuvPNOVFWltdVOSEgICxYsYNq0adTW1mK32xk0aBD33XcfqampFBYW+jvsm55er2PIkCGMGjWKxMR+Fz0jZ1xF95ACpIcIDQ1l0qTJTJkyhaioqEuet9lsOBwOqqurCQgI9EOEtzZFURg5ciQTJ07AYDBQLxe7fUbTNBwOB6qqdsw9Ajpd1xtLnU4ndXX11NfXo6oqer1eJg28wfR6A+PH386UKVMYMmSov8MRvYD0gukBDAYDffr08f4cGxuL0Wjy/hwREUl29lFyc/OwWq0MHjzYH2He0qKioti8eTMmk4kRI0bIPCQ+1NbWxvvvf4Dd3sKAAQM6ukoHAAp9+vTBYDBgtUazceNGmpubmTNnNiEhId6u7IGBgd6ZjMV3Fxsbi8Hg6WUUHBxMe3u7nyMStzopQHqA8PBwVq9e7f329/TTT1FfX09paRnTpk33DtHudru93eTEjfXEE4/jdqsAXbrhiu5nsVhYvvxRrFZPMf7oo8vR6TxnOF544QUMBgP/9m+voSigqpq3K+5zzz2HoiiMGzeOsWPH+vld3NwURWHlypXee58mTJhAe3s7X375Jf36STEuuocUIH7gdru9d5sDqKrnA+BCzwuFiooKUlJS6NcvwbueXq9H07QuPTTcbrhoU+IqVFVFVdUu+fek88KU45Lf7uMZW0K75BjQ6RQUpTP3CqrqKQY7j4vOglCnu3CcdD1m8G5P2uzbud3uK34GdR4f4Dkz5Xa7uf/++7x5ltx+fy6XS3oydpACxMdaWlr4z//8TwIDL9zHUV6eSHt7wGXXz8pa+63bM5vtbN8uN6Veq5qaGkpKSjh37px32bflX/J74+3evZv29nbvmQz49ja4XtJm3664uBi73c7Bgwe9y74t/7m5m72PJbffn6qqFBcX+zuMHkEKEB8LCgri+eefJzY21t+h9Eo5OTns3r2blStX+juUXknTNF599VV+/vOfy1DsfpKeno7NZmPhwoX+DqVXcjqd/Ou//qu/w+gRpADxA6PRiMlkuvqK39B56lqv13v/v9K9Cp2nreV+ka4MBgN6vf668n9x3r+Zb88gWZ7eG53PdZ7CltxfqrMHi8lkumFtIK6PwWDAYDBcMf+S6+4ln8sXSAHSA3z1VSv7959i3LhxKIrC0aPZDBw4iBMnTpCY2I/4eM99IKqqsXbtO8yb9yCbNm1m4cJHLjs/DEB6+m5CQkIYPz4F8HyoZGRk0K9fAgkJnj7+Mq+DR0YG7Nt3gr5944mIiKCmpobKykpiY2M5duwYo0eP4rPPPuOf/ukH3u6hlZUVnD59mgEDBpKens6yZcvo/KzOyDiA2+1mypQ7L/ldkvPL27q1ni+/zAA8vb7GjBmN2XxhttyGhgY2bvyIJ5544pJB4qqqqsjNzWXq1KkyX8l3lJFxYZj1iooKduz4iuXLl3O99YfkXlwPKcN6gNLSFnbsWO+d12LPno/R6WyMHh1HcnIQ0dEaQUGtBAa2YLOdIiSkHZvtFMHBdozGeqKiVKKjNUJD2zEa64iKUnE4ytC0akymBsLCHFitMHp0HP37B8u8Dt9QXw8HDnxOe3sJVivY7ec5cuRLkpICGT26T0e+cwkJaSMgoInoaI3k5CBGjYojKKiVurp8goPtBAa2EB2t4XZX4nKVYzY3Ehra3mW+Esn55Z09W0t2dhqjR/elsvIEGzb8ibAwB1FRKmZzIwEBnn0/OlojIsJJcLDd2xad7SQ5/u7q6yEqSsVorMdkaqS+Ph+rFYKCWjGZGoiKUomIcBIdrXU8dhER4SI6WutoE89jyb24HnIGpIdwOp1UV1ej0+lwODz977Ozs0lMTCIwMIB1697HbDZTWloKeIZNXrNmDfX19UyePIUZM+7mzTffxGy2MH36dADS0tI4fDgTg8HAiy++RHZ2Nv36JTJ+/Hh/vc0erb6+nqqqKu8gZK2trWzbto2HH36YkpJi3njjDcrKynj22WcJDAxk+/bt3HPPvRQUFPDGG69TUVHBCy/8BIBdu3aTl5eP2+3mlVdeISDgxtxgeSsLCwtn1KhR3Hbbbfz85z/n/PkicnJOcvz4MZxOFw6Hg9raWn7zm98QGRlBVVU1zzzzDKGhIaSlpTFo0CB/v4WblqqqrFv3HkVF52lpaUGn01FZWcm7775DcHAws2fPYevWrdx9993k5uYSGhpKdnYWK1c+S3l5GTt3pvPEE0/4+22Im4ycAekhzp8/z29+8xt+/etfk5ubB3hGP21qauKLL7ayZMkSVq9eTUiI58Y9nU7hwQfn8cILL7B3716qqqqpqqpm9uzZ3g/iUaNG8S//8irNzc1UVlZis9lobm7223vsyVRV5d133+XXv/4169atQ1VVnE6nt+ALCQnl6aef5v7772f//v04HO2UlZUDGpGRkTz77HNMnDiJzMxDAAwdOpSf/vSnKIpCSUmJH9/ZzUev1xMVFYnNZiMjI4MXXniBxYsXo9MpuFwuGhsbWLnyWR544AH27duHw+GkrKxUujZ+Dw0NDeTm5vLyyy8zd+5c737rcrmYP38B8fHxTJt2F//93/9NTk4OEydOwOl0cfp0Pnv37iM+Pl7uFxHXTc6A9BADBw7kV7/6FYqi8Itf/KLLc7W1tQQHBxMUFERISCgABoMRq9WK0WjE5XKRkJDAwoULeeutt5g0aRIAffrEddx0aejS519cSqfT8eyzzzJy5EiysrLYs6fr5GZhYWEEBQUREBBAe3vXmVcjIiIICAjAYrHQ3NyMxWIhLi7We7Of0+n05Vu56blcLmy2GsxmCw6HA5PJjNVq9Y7SGRYWTnBwMBaL5ZK2EN+N3W5HVTUMBgMxMTHo9TrGjBlDa2srv//971m8eBH9+w+grq6OIUOGYDKZmTRpIunpu6iurmbu3Ln+fgviJiQFSA/ReWd057+Ll48ZM5pPPvmEAQMGcO7cWe/yi9XW1tLS0kL//v0pKyuTU/7XqTP/er3+OmfCvdJ8JErHdm9IeL2CzWZj//79HD16lEGDBjJixAiCg4PZtu1LysrKsdvtXdaXb9w3TlRUJA6Hg507v+LoUc8lr/LycnQ6HTExMVRUVHLw4CFWrPhnvvpqJ6dOnWLkyFGsWbOW4cOHExoa6u+3IG5CUoD0AKGhITz66KPewmPRokVER1txudwEBAQwZ84DHDp0CLPZzKuvvkpkZCSPPfYYoaGh6HQ6fvCDHxAcHITb7WbAgAGkpIynpqYWs9nk3Z7VemF74lLz5s3zzi2SnJzMAw88gMvlIiDAQkREREePAIXhw4eTkJCA0+kiMDCQuLhY73gKt99+Oy6Xq2PEWk9X3PnzF9C3b1+/va+bRUyMlfnz52O325k5cyYDBvTHYDCycuUz5OScJDU1ldTUO4iIiPAeK0OGDCEmJgan00lgYJAUJN+DyWRm9erVnDlzhnvvvRedTkdQUBAOh4OJEycyduxY8vLyGD16NMOGDcNubyMsLIwf//jHREZGSrdS8Z1IAdIDmM0WxowZ4/155MiRHDhwgKKiIhYvXkxgYCDTpk3r8pqL1++cB6Pz5lOA4OCQLts7ePAgRUVFLFq0qJvexc1t2LBh3scREREYjQbeeONPjB+fQmBgIKNHjwbouBRg4PXXX2fy5MkEBQUzYsQIgMsWGsOHD/fNG7jJBQeHMGPGjEuWx8X1IS6uT5dlnW0RHR2NwaDnjTf+xB133OGTOG9ViqKQlJREUlJSl+UXt0nnzesXt0dnWwjxXUgB4mNOp5MdO3YQHn5h/I7MzGjCwx3fWM/FzJkzOXky5wb9Xs/2Tp066V1WX2/C7bbdkO3fLIqKisjJyeHzzz/3Lrtc/jXNU9iZzWb27dvb5TlV1UhNTcVgMFzy3NX0xpxfTNM0zp07x5dffonFcmGcj8u1wbVQVY2UlJQu7dTbc3w1x44do6GhgaCgIO+y75r/b5LcX53b7fb2tOvtpADxsaVLl1JUVOQdLRMgMNBBXd03m8Lz8zcue38Pl24vKMjRJY7eoF+/fvTr1+8a8g8QwpVnJDd+y3NX1htz/k2d3TWvrQ2uRde2kBx/u5EjRwI3Mv8XSO6vTlEUVqxYcZ33mt2alJ7QdS0lJUXLzMz0dxhCCCGEuIFSUlLIzMy87A1acgbExzqHPJYhi4UQQvRmcuuyj9XXy3DRQgghhBQgQgghhPA5KUCEEEII4XNSgAghhBDC56QAEUIIIYTPSQEihBBCCJ+TAkQIIYQQPicFiBBCCCF8TgoQHwsPh+pqz/9CCCFEbyUjofqYjH4qhBBCyBkQIYQQQviBFCBCCCGE8LlrKkAURQlXFGWjoii5iqKcUhRlkqIokYqipCmKcrrj/4iOdRVFUf6gKMoZRVGOKYpye/e+BSGEEELcbK71DMh/AVs1TRsGjAFOAa8COzRNGwzs6PgZYDYwuOPfU8CfbmjEQgghhLjpXbUAURQlDLgLeAtA0zSHpmn1wHxgbcdqa4EFHY/nA29rHhlAuKIofW545EIIIYS4aV3LGZD+QDXwd0VRshRFeVNRlCAgVtO08o51KoDYjsfxQPFFry/pWCaEEEIIAVxbAWIAbgf+pGnaOKCFC5dbANA0TQO06/nFiqI8pShKpqIomdXV1dfzUiGEEELc5K6lACkBSjRNO9Dx80Y8BUll56WVjv+rOp4vBfpd9PqEjmVdaJr2V03TUjRNS7Fard81/puapmmoqoqnfru+dVRV9S7vfHyl9a/l91xp3evZ3uWWf9vvvZ7tXG+M1/P7Ln7uWlxPPr9t/YuXX8/2vmsc3b0dX7l4n+/pMWuadtX9+Fr35W/b1o30XT5DunMfupbjtqfvB+LyrjoQmaZpFYqiFCuKMlTTtDxgJnCy49/jwP/q+H9zx0s+AVYpirIemAA0XHSpptfLyICiogZstiqs1lg+/fRTli5dil6vv+z61dU20tPTWbhwIYriWeZwOFi/fj1BQUFMnz6N9es/YOTIkZjNJoYPH87OnTtJTZ1A3759O9Z3sn79epYsWYzZbPnW+NxulfXr3+fBB+dx8mTONW9P0zS+/HIrpaVlLF68mJCQEAA+/3wLI0eOIikp6ZLf5XS6WL9+PYsWLcRiCfBuZ9u2bZSUFLNw4SLCwsIueV1zczObNm1i4cKFHDhwkNTUVD76aCMPP/wIgYGBl31fmqaRlZXF/v37mT9/HgkJ/bo8X1xcQnZ2Ng8++OC35gcu3ybfRtNg8+bNXXIIUF5ewUcfbWT8+BROnz7NkiVLMJvNV99gh4aGBrZs+YIlS5ag011DIJeNTWPfvr2cOHGChQsXEh3d878M2O1tvPfeu/TtG8/999/HmTNnqK6upk+fOJKSksnKysbhaEev1zNu3DjMZguappGfn49Op2PQoEGUlJRw/nwRFksAo0ePprKygqKiIsCTk+HDh2MwGDl16iSqqjFixAhCQ0NRrqXBL5Keno7VGsOIESO82z5y5DD9+iViNptZt24dw4cPY9q06SgKNDU188knm1m6dNklnwmnT5+hsLCQe++998Yk8gpUVePDDz9g1qxZhIdHANDS0sLHH3/MsmXL0Os9fzYaGho4efIkEyZMYPfuXeTl5bNo0SIiIyNvaDyaBhs3fsTdd0/vsn9qmsaWLZ9TWVnFkiWLCQoKJjxcBnu8mVzrSKirgfcURTEBZ4En8Zw9+VBRlBVAEbC4Y90twBzgDNDasa7oMKYwmYlqEUQALlg8G2h4jDZ9IicGFgLgcrlwOp2YzWZaWlooKztKePh8VFXFbDZTWFhKc/M5nnvup+zatZtBg8KYN28Subm5xMbqqazMwWweTlBQOBaLBYfDTXHxYcLCHsJg0LBYPEWD0+nE7XZ7f3Y4HLjdboqLswgLm0VSUtBF2xv2rduz2+0cPbqDf/u3fyMsLAhVdeJ0urDZTmEwJBAdnUhraytmswmDwQhAe7vK+fOZhIbOw2jUCAgIoK2tjezsNH72s58RERGCw2FHUXSYTKaO17QBbRQXZ2G1LiI5OYjoaI2iosOEhc3FZIKAgAAURcHlctHW1obFYkFRFDIyPuWxx5aTnNwHnU71/jHRNI2Kinqqq08SGnofiqJgNHpibGtrQ6/Xd/m5qamJsrKjWK0LcbudtLc7CAgIQKfToaoqra2tWCwW9Ho9iqKgaVzSJoqisGNHOhMmDGTKlNv46qv1hIc/jF6vYrF4/mBeHJ9Op+vyLa+trQ2ns5WSkiyiohah09Hxu7q+TlGUjpwpmEwmFEXB7XbR3u7AYrGgqioHDnzO6tWriYuLRFFU7/u43PaAS7Z/8eO2tjZ0ugvt5Xa7cDg8+3Lne7g4P1eK9+I273z/nTEdPZqHxdLM0qUzOXz4IBkZ+5g8eQrBwW2EhLRx8OBnzJo1C4PBgNWqYDZDRUUF7777e5KTk0hNfYWvvz5MdHQ0mzevJzjYzoABA2hvNwAa7777HomJT7Jr1y4GDOiPy+Xis88O8vzzz6Np6iXt4na7sdvt3n2g81u52+2msfEs0dEQHDwAo9GIXq8nMTGQPn2MHD16hH79LMyfPwWjEdrb7ahqK8XFWURHe4pKt9uN2+3CbLZw5oyN+vrThIRMRa/XYzAYLpu/Kz3ubPfAwMBLCilN07p87pSWZhMUNI2gIDMBAQEYjU7Onz9CePhCwInZbCEw0EBzcwDh4U4OHfqCF198kZiYcNxup3c7Op3nJLvdbve+/859qDOuzseapuF0Orscfy6XC7fbRVlZNoGBqURFeY6vgIAA7HY7J06k89prrxEWFoSieKa5EDePaypANE3LBlIu89TMy6yrAc99z7huWQFqEWscx9iyZQsrVvwzL730MuPGjeWd2S9SUFBAeHgY7777Li0trTgcDh566CFKSkr44x//SHV1FatWrSYtLY2TJ0+ydetWvv56P42NjYwePZqcnBxCQ0NRVZVNmz6mqamZUaNGMX/+fJqbW3jrrbcoLS1l8eLFDBo0iLVr16DXG3jooQU0N7ewfv16TCYTNpsNRVG+sb1NV9zeokWLaGlpIT8/n02bNjFnzhzefPNNAM6ePcs999zLjh07OH78OP369ePhhx/2fjC1ttpZs2YN1dXV3HvvvSiKQn5+Ph9//DF33jmFzz77nJCQEB59dDmHDmWye/du9Hod7e3tABw6dIiBAwfS1ubZTmlpGfPnz2f8+PGsXbuWxsZGampquPvuuzl69CgWi4V58+aRmZnJY489xv79+3E4HERFRXH69Gn+8Ic/0NBQz09+8iLFxefZseMroqIiWbZsOV98sYXjx090/FFwU1dXx7vvvktbWxtWq5Xly5fz/vvvY7PZqKys5NFHH2Xs2LEA3jZxOl3079+fOXPmkJ6+i8DAQPr160djYxNvvvkmJSUlLF++nLNnC5g4cRJOp5PNmzexatUqtm/fzoABAzl79iwHDx5EURScTieVlZXs2bOHRYsW8be//ZWpU+8iPr4vn332GSNHjmTHjq+oq6sjISGeJUuWduxfLTQ2NjJ16lROnTrFP/7xD+666y4KCgp4+OGHSUtLIzIykqysLBYvXgxofPjhBiIiIkhNTQXgo48+YvXq1ezcuZPExH5UVFSyf/9+FAXmzHmA+Ph43nnnHVpbW7Hb7Tz33HNs3bqV2tpanE4ny5cvZ+vWrTz55JOcOXOa3NxcIiOjOHz4MI2NjSxcuJCAgAAyMzNZvHgx6enpWCwW9u71nLE5ePAge/bs4YEHHiAkJIT4+HicTgdGo4mYmFj69u2DyWTC7Xbz8cebuOeeeygoKECv1zNv3jzsdjtHjhxBURT69u1L3759KS8vJzw8nBEjbmPnzq8IDAzCYrFQXW2jtbWVtWvX8tRTP6KkpLTjbNp81qxZQ2trKyaTiRUrVrBhw4eUl1cQFxeHpmns2LGDAwcyCA4O5oc//BH5+fk4HO2kpW2nurqaMWPGUFdXx969ezv27TYaGhp54403vMfj008/DcCJEyd4/fXXaW1t5Uc/+iEff7yJxx9/HLvdzscf/4Mnn/xndDodW7Z8TnS0leDgIAoLi0hJGc/bb3vaYtasWUz8xmmCoqIi1q9/n7a2dhYsWIDT6WLdunXYbNVMmzadiRMnUldXy9/+9iaVlRUsWrSYpKREDhw4QFtbG7m5ufzjH/9g3rx5bNiwgdbWVpxOBz/+8fPs2bOHY8eOERoaSmpqKqWlpUydOpWtW7eyfPlyjEYjBQUFvPfeexgMBux2Oy+99BLNzc38/e9/x2AwUFxcgqZpfPLJZgoLixg2bCgGg8H7mfPYY49hMMjMIjcbGQnVzwwGA8uXPwpAevpOMjIyGDRoMI8//gMURSEsLAyLxcyKFStITZ1ARkYGd955J7fddhsPPDCXiRMnMn36dEaMGEFhYSGtra0A3H77eF555RUOHDiA3W5HURQefPBBnnjiCbZt28a5c+dob3ewbNlSYmJi+eyzz1i6dAkrVqzwHsiFhYW0tLQAMG7c7Zdsb+7cud7tjRs3juTkZBYtWsi+ffsYN24cL7zwAuHh4R2n+fdx5513MmvWrEu+fc2ePZtVq1bx6aefMmLECJKSkli8eDHHjh2nb9++LFmyBL3ewPbt21m1ahULFnh6fHeeVne5XADMmjWLp59+irS0NM6cOYPL5eLZZ58FYMqUKQwePNh7uauwsBAAm81G503QISEhrFz5DAMGDCQ7O5v9+zMYMeI2Hn74Eex2O4cOZfLiiy8yY8YM7/rLli3jn//5SXJycsjNzaW0tJTVq1djNBrp16/rZZ7bbx/Pyy+/zPHjx2lra2P8+PHMmTOb/v2T0ekUFixYwGOPPUZaWhoWi4WDBw9y4sQJsrOzqaysYt++rwkMDGT37t08//zzzJ49G03TCA0NJSsri5qaGk6cOMH+/V9z4kQOqqrx5ZfbeOSRh5k+fRrh4RHk5OQQERHOU089haZpTJ06lf79k1m69P9n772jozzStO9f56jOyhFlULSQiAKb4AiMMQabtQ02tl+v7XFYcJjxt7Ozs9/Z3Qnv2W9mZxyZscceA8YkM2QRJaIQIgkRJISQhLKQ1C21pM79/dHdj5EBp/EY7/vqOocj1Oqup6ruquq77rrruhbidrtoamoCoK2tt7BcRgAAIABJREFUDZvNhlgs4vTp05w6dRqJREJYmJby8nLOnTvHqVOnaG9v59ChQ2i1WjZt2sSMGTMoLCxi27atHDtWQVJSIk8+uQSRSITFYmb27NksWbIEuVxOS0sLjY0NtLe3s29fKVFRUeTn57N48WKmT5/Onj17sNvtNDUFjkY6OjqwWq0UFxdTUFDA2LFjaWpq4uDBg2zZsoXf/e53gIjIyEg2btzIz372L7S3t1NVVYVKpSI9PR0I7L7Pnz/Pf/7nf1JdXS3Yye/3s2vXLiZMmIBCoeT+++fyySef8OGHHzJlyhQ8Hg+1tbX4fH4GBgZobGygquo0PT093Hfffdjtds6fP8+lS/Xk5uby2GOPIRKJSE1NYenSZdjtdi5evEhLSwsOh5OJEycyZcoUMjMz2bt3Ly+99BI/+tH9ALjdLhoaGnjyySe59957KS0tBcBoNPL888+TmZnJoUOHAaiqOs3JkydQKJSIxWJEIhHjxo1n3bq1fPLJaoqKiti0aTPjx4/njTfeEPohBL/fz/r167nzzrv46U9/QkJCAn6/n6lTp/Lyy//E3r178Xo9SCRSFiyYz+OPP8GGDRtwOJxcvHiR7OxskpICY+j48eNkZGSwePFixGIJLpeLI0eO8Oqrr7J48WKys7Opqqri97//PXl5ucJaY7fb6e/v4+WXXyYhIYHTp0+zY8cO7rrrLp5//nlUKiUej5vy8nLuuusupk69ncLCwuCas+CmR9gj+GFjxAG5xTAaDcKZ6eDgEEajidLSfaxdu46JEycGF+5w9Ho9YWFhDA0NIZFIkEjESKVSxGIxUqlEiCgAiMViEhMTg6F8Hz6fF41GTVRUFFqtlqGhIbKyssjLy+M3v/nfVFVV0dXVhcFgxGw2XZd3cbPyoqOj0Wq1OByOYB1ESKUyWltbMZvNqNVqoqOjEIlEPPXUkxw+fJi33noLl8sllK1Wq4iOjkan0+FyufD7/UgkYmQyGffeey8ikYhf/vKXNDU1MTg4iFarJSYm9rpcCaVSRXR0DBqNFqfTQViYlvPnz/Phh38mOzsblUophHavdYCuPdYI9E8YGo2GoaEhHnroIVpaWvnNb35DW1sbPl/geCQhIR6JREJ7eztvv/02x45VYrVakcvltLa28qc//YmEhAQhDybUhwkJCSiVSuRyOUNDQ0HbSRGJxGi1WiIjIwX7jB1byLlzZ6mpucC0adODu3E1CoUCl8uJRqMmLi4OuVyOWq0mKSmJPXv2UFAwlitXmjl27BhFRUXo9To++WQ1lZXHKSgowGAwUFFxjI8//piioqLgsYwYmUwKfB4OD11qKy4u5ujRoxw7dozp06dTUDCWmpoazp07x5133sm+ffuQy+WoVGqsVisNDQ1BJ2EKRqOJsrL9rF69mgkTJuB2e/jTn/5IaWkpHR0deDweiorGcfDgAVpbW8nJyWXHjh2sX7+eS5cuCc5vyE4hWwWOHyTI5TJMJhMLFy7kmWf+F319fUilEp566imWLl1KYmIiJ06cYNOmTXR2drJp0ybOnTvHhQvnGT16ND//+c958MEH+fTTT/H7/dhsNk6dOsWUKVNwuVysXLmSn/3sZ7z++mt8+OGHgqN7LdrbO3A6nZw7d4709DRiYmKQSqVkZKQLxwiJiUnI5XJ0Oj19fX3CZ6VSCRKJBLfbzeDgIBqNhpiYGCGvymg0YjQahXkPEBsbi1KpxGw209vby6RJkzhw4CCVlZXccccdwtg2Go1IJFLcbjcmk4nu7m7Cw8NRKBQ3zNHo7e3BYrGgVKrQ6/XI5QEHWq1W43a78fkCjq7ZbMFgMGC324UxIpEE5r5MJsNsNrF3717WrQusXw7HEHK5HKVSidFoRKvVkpCQwKVLl0hMTBo2F6OiAuuJRqPB4Riira0Ns9mMTqfDYrEgk8l5+umn2bx5M3/+85+FeRWYQ98uB2oEtxYjDsgtQE3NhZsmatlsNsxmC9HR0ZjN5r9bdndvbw/R0dEkJSVx5coVMjIy2L17F2Vl+2lubv6bys7Ly2Pv3r0cP17JqVOn8fv9dHf3MGXKFK5cuTLMAbFarezatYudO0uwWCzDHIuOjg5ycrKDYdlBdDodBw4cYOfOkuACeHP099vR6/WYTGbi4+Px+T7vR4vFQn9/PydOnGD//v03LaOzs5Nx48YxMDCATCbD7XZx9OhRduwowe1209TUhFwuJzo6Go8n8CWiVqvR6/WkpKQMu1Xj8XgoKSnh8OHDWK1WvurmV3i4BavVhtVqZfLkyWzZsoWxY8diMBiQyeQcOnSYkpIS4YupoKCA1atXU1hYiEqlorGxgaSkJOz2AYxGI6mpqcjlMmw2GyaTiYiICKKioobVMTo6mvb2dk6cOMGRI+UApKSk0tnZQUdHB3FxcZjNZgYHB+jq6qK4uJjt27dz2223odfrSE1NxWg0kp6ejtlspq+vD4vFQlRUFOHh4dhsVtrb28nIyMDjcQMwadIktmzZInyxVlWdZsyY0UJ+SGRkJFevXuXkyZMcOnRoWB9JJFKSkpLYu3cv5eVHheOK48ePc+rUKZqbm8nKGsPLL7/EkiVLuOOO20lOTiY8PIKSkhLq6upobGwUEoPLy48IyaYAVmsvra2tWK1WZDIZarUarVZLZWUlJSUleDxesrOzEYlEpKenExcXj0ajuc6We/bs5vjx45w7d/aGydgajQatVhsc2zsZGLj52D527BjHjx9nz549ZGdnkZaWRmNjI3a7nejoKCDgrO3fv5/09HRiY2MpKysjOzubHTt2UFl5jIqKiuvKHT16DNu3b6e8vJyqqqobPru1tZWyslK2bt1CcnIyYvH1UQer1YbFYiY6OhqTyYTJZMZut3Po0CF27NjO6dOBqNnChQ/z6aerv/TmWW5uDjt37uTIkSPU1l7E6/XS32/n9tunUldXh9f79W6tjeCHC8kvfvGLW10Hli9f/otnnnnmVlfj+8GZf+OA9THuvfde1Go1RqOR+Ph4Ynv+X2wJv6Guro6EhARSUlL4+OO/UFhYSGJiIrGxscjlciIiIoiMjMBkMhMTE4NSqSQqKgqj0cjBgwfJzc0hPj6B+Pg4lEoVOp2epKQkDAYjiYmJwV2KGaPRRHV1NWazmRkzZpCRkUFHRydyuZyioiKSk0dRXl5OTk4OCQkJJCTEf2l5sbFx6PUGEhISiImJwe12Y7fbmTBhAqmpKXR0dNDa2sKdd95FXFycsGMxmy1otVrcbhdz5z5AWJgWnU5PYmICvb1WampqyMrKorCwkPT0dBobG4mKiiIvL09YXO+44w7Cw8NJSEhAJpNhMhmx2WyAn/z829ixYzsGQ+CLMRSZiIgIp7m5mbFjx5KamkpERAQWS8DxUyoVREVFMzQ0RH19PRMmjCcrK5vk5GQaGhpITk4mKyuLgoICPB4P/f39FBQUIJGIsVqtTJgwgfLycoaGhkhJSQECxzXR0dF0dnbyox/9iKioqGD0Jwa9Xie0WSaTY7EE+jMyMoKcnFxSU1Mxm82MHz8elUpFamoKDQ2XiY+PJycnh/j4eIxGAxERERQUFBAfH09GRiZRUVHs27ePyZMno1QqWbFiJTqdDpPJxOjRo1m7di3JyckkJSWRmJiITqdDp9PR0dHB+PHjSE1Nw2AwcOVKE2PGZDF69GhEosARR1ZWFmlp19ZLTXZ2NvX19fT09BAbG8uFCxeIiYkhLS2NFStWMH78eJKTk2lubiY7O5u0tICjcuxYJQ888ADh4eGkp6fT0NBARETg5khKSgoGg5H29jaKiopITU3FYrEQERFOZGQkGRnptLa24nK5mDfvAeRyBefPn6O3t4dp06aRmpqGSqVGo9Gg0WiJiooiISEBq9VKY2MjcXFx3HXXXUgkEvr6+hg3bhwajQaJREJGRkbwWHOIOXPmYDabSUpK4vLly2RmZjJ69GjGjBmDyWTi8uV6PB4vycnJGI0G4uLiUSqVqNUq4uLiaW9vZ+bMmaSkpHDsWAWjRiWTmJhIZGQk4eHhpKam0tjYSHR0NLm5uSQljcJkMhEfH49cLic8PJzY2FgSEhLo6ekhOzuLcePGIZcriI2NIS8vn8jISCGC1dXVydSpU8nLy2NoaJCJEyfgcrnp7e1lzJgxaLVaYUkSiUSkpKRgt9ux2+2MGTOGiIgIEhISkMvlGI1GkpKSiIqKQiwWo1QqmT17Ni6XixMnjjN9+nT0ej2JiYmUl5eTlJREcnIyH330ERMmTCA/P5+GhobgBkPJuHHjyM/Px+v1ERMTIyTUhpxVlSoQFc3OzsFms+Hz+ZgwYTyjRiXT2NjA1atXmTVrFhERERgMgTXn85wySE393lf1EXwJli9fzjPPPPNvN/qb6Idwf7qwsNBfWVl5q6vx/WCViOMZ1/f52BoRlek+PvvsM2pra4Vd2JIlS1CpVF9Z7L59+9i5cyf//M//PGxx+bYoLd1HScl3V953Da/Xy5o1a7hy5QqvvPLKdWfA5eXl7Nixg8jISAYHB3n88cV/9yum58+fZ9WqVcTExDAwYA8m6l2/4/2+4Ha7+f3vfy8cO8XGxqLVaqmoqMBsNuN0OnnyySeFsXYjeDxufvOb/82TTz5JVFTU1352IGEwcOSh1+vx+bwsWfLkdRGC3t5e3nzzTV5//fVvdAX5fyrKy8vZsGFD8JaX8VZX51tjYGCA5cuXExMTw0MPPSQ4PuvXr6Ou7pJwZXnJkieEK/bfB7q64J57vrfHjeBroLCwkMrKyhuekY04IN83vsQBOZ4RuL7X19eH3+8nLEwrXFn9KgwMDOD3+9FoNN/Jeeh3Xd53Db/fT39/P3K57IYLnN/vx26343a7hdyJv3c7/P5AcqLLFbiWG7pueysRikSJRCLB0ejv78fr9aLVaoWrrjdDqB+1Wu03bsu1Y1mr1Qo5EdcidFX6hzrOvmsMDg4Gc6i+eX/+kBA4DulDqx2+Rn3b9eu7wogD8sPDlzkgI/eWbgFudlc98LoYMADQ2/tNSg3sLIMpAd8BvuvyvmuIAB1OJ/T33+zvgSTQ/v6bvefvUadAtMhuD/y79ZARIJ2B7u7Qa4EkY5vt63w+0I8Ox7d59udj2Wq92XukgPYHPM6+awSI8v7nt1cCGG+wRn3b9eu7gcHw/T9zBN8eIw7ILcANPfRVI577CEYwghGM4P8ejNyCuYXw+Xy43W7hd6fTeZ3+Quhq6hc/88X3ffEoLcAg6L3hMx0Oxw3/9rcgxGJ4syO9L7b1m8Lr9V53DfJGbfwq7Q2Xy/Wl9fw6uNYGXq8Xh8Pxrcr7urb8Im40LuCb98c3KRtubIO/JwLXP4ffdLhZe75JO7/Oe29km2s/+8W+CI3/r6sn9EX8LX37VXPvm5RzM9vfSlxbr2+7Hn4Rf8+xfLO1dwTXYyQCcguwY0fg56VLlzhx4hTz5j3ALOCpp9awYMECgQfA6XTypz+9z9NPPyW81tzcwr59pUGSo0A5DQ0NtLS0MnnyZOEZe/aUEhamE1grITAxDx8+QmXlMR54YB4JCQnfqN5+v5++vj7UavV15/k+n58PPviQBx54ALPZct1nL126TGXlMR5+eOE3emYIR48eY2BgUCABAygrO4RUKhXa7fV62bVrJxMmTBA0LJxOBx6PB41GS09PL3/+85/Jz89jypSpHD16lN7eXlJSUtBqNZw+XSWUU1BwG4mJSTesS0dHJ9u2befxxx9n7dp19Pf38fDDC4fxfnwddHZeZfPmTUH2yoAxW1pauXixNqgNcuMcAZvNxurVq3n66f81LPl2+/ZdREdHkZ9/GxCwV1lZKWlpgeuYXwc9Pb2sW7eOp59++jp9mRMnTtPV1cndd38/obpPP11PUdE4kpOTgYBddu/exbhx469L4Dxx4qRw/fnLEJgDh0hJSSEqKvqm7wvZ+Iknnhim93Pq1ClkMjk2mw23283tt98eLBdWrlzN7bffcR0B3dfB4cNHcbtd3H77Hd/4sz6fn/ff/5B58+ZhNpu/8edDcDgcvP/+B8PWmx8CQuvgY489xooVK4bV78qVFsrKSnn00c/Xw8uXG2hra2PSpEk3LbOq6ixXrjQxa9bs77y+mzZtIyUlhaysrBFtmq/AiANyC2A0uunttSKVWhkcbASuAvDMM/NQqeT09FxFqVSi0YixWmvRaofweOyYTCasVgd2+2VUKjs+nw+dTodCYSYyUoLF4sfpdGK39+PxtCGRuDGbffT09KBUKlEqlZw8uZPFix8lKSkKicSLRCLB43EjEgU0LWQymbDDC9Ei2+12dLowpFIpf/zjm8yfP5/k5GREIpBKZQI1uc1Wh0YzBHRhNBqRSqV4PB6s1l7kchuDg02E6C9Cu7be3l7MZhM+n19wakKRkgDBkRi3241Y3IPPZ0Mi6RESPAMCzFLE4m40GjUKhZKJE9OIi1OiVIb4EI5SV1fHokWLOHPmFKmpOubNm8rWrVvp67Nx++2BK6phYToMhjGAnw8++DO5udGYzQnBvlOg0Wjx+Xz09vYil/fR13cJpbKfS5fK+dd//TlqtQKZzC/UP3QtMNC/HkEXpq+vD6/Xi8FgwOl00tdXj0YzgMfjRa/Xo1LpMRiSCA8PaIP09fWj04UhkwWSRa1WKwrFIFZrXdDeAwwODmI2m3G7W5FIFIhEVwkLC0MulzNuXDJGYxhKpWtY/4a0QUIaMX6/n97eXhQKO319lzCbffh8HlwuJx6PB73egFTai8fThlTaKxCguVwu5HK5oOoqlUrp7+/H4/FgNBqF2xEej0dIaNXpdDgcjmC5+mGaJU6ng76+fsxmMwMDjSgUmYhEXcHnS5k4MY2YGCUSiWvYWM3NjUahUKDTeQA/UqlMGNcej2dYHQsKEjAatSiVbsEubrcbmUwm2Fih6Kev7xLh4TAw0I/D4cRkMpGbG4NYLObw4TrANWw8Dgw0olT2B8e/AZFIjN/vE+aI3x+IjnR392AwGJDL5bjd7uBV0w7AI8yP0JwaHBxEIpGg0WjweDzXzU+73Y7H48Fmq8NgcGEwuOnp6cFoNN4wwdjj8dDd3Y1er0OhUDI4OMjg4CBhYWGoVN7geuPA6w3wx4TGbmgeymQyQQ/JbDYLfC2hv4XGl0wmY2BgAIdjCK02MBa/WH+/33/dZ/r6+vD5fAKDcl+fDZHIQ29vLQaDW6hfaD3s6RnEbm9ApbIHE1/DkMtNREdLMRg+t2+oHV6vF6vVikTSjdvdhsXix2azAgHW6VA0pa+vD5PJNMzBd7lc9Pb2YjKZblh3p9OB3T6A09mMXG4hPHxEm+arMOKA3AK88867OBwO2traiI6O5vDhw8zKgu3bt2E2W6iursZoNDJ79mx6e6386U/v09fXx6RJE0lJSaWmpob33nuPlpYWli5ditPppKysjAULFvDb3/4WjUbDhQsXWLBgPvv3l3HmTDVGo4HCwkLOnq1mw4b1AsfD9OnTee+95UyfPp2//nUjr7zyKg0NDZSVlTFnzhw++ugjpFIpTU2NLFq0mKqqKtxuF2PHFtLdfZXHH3+CkpKS4JeRm48++hCHw0F2djbz58/n3XffY3BwkI6OjmHkWzablbfffgepVEpCQjzNzc08/fTTeDxe/vKXv5CZmYnH4yE+Pp7a2lq0Wi1lZaU0NTXR19fHG2+8AcDu3btpaGigt9fKsmXLKCkpYc6cOSQkJODxeDhwYD/19ZcxGAxUVVXR0tJCTk4uJ0+e5Ec/moPVamX06DFoNBr0ej3t7W2IRCLy8/M4ePAgp06dwmg0smDBfFav/pT29naswYzK48ePc+nSJdasWUtPTzfPPfc8/f39bNz4GRkZmYhEMGPGTD744APuvPNOWltb2b9/P0qlkuTkZMaOHcvly5d5773lNDc38/zzz6NQKNi6dRsLFy7kgw8+EHQyfvKTn1BeHiBkGhoawuFwYLPZ+OCDDzAaDUydGtiJb9myhVOnTjE4OMiyZcs4dOgQqamplJaW8vzzz2Oz2fjssw3k5eVz9GjAOfvZz/6ZgwcPcvlyAwMDdpxOJ1evdvGf//lLYmKi6ejo5LnnngPg4MFDWK02urq6ePHFF9i48a8UF0+mtvYicXFx+Hw+du/ehVgsYd68eWRmZgLw1ltv0dvbi9frQalUoVKpuHy5np/85KdCxKC1tVVoc0FBAX6/j7Vr1yKXyzGbTTz33PPs3LmTyZMns3NnCS+99DKXLl3i6NGjQX6UVFwuFx0d7cyd+wCffLKavLw8Dh8+THFxMTU1NSQkJHDq1CmmTZvG7t27ufvuu4mNjeW//uu/ePHFF1m3bh3t7e3YbDb8fj8dHe385S8fYzIZufvue6ivrxcYWvfu3UddXYCx9Y033sDr9fLJJ58E2TzVTJs2nYqKCkGuQKFQ0NTUhNvtJj4+jilTpvLb3/4WpVLBxYt13HnnTGF+1NbW8s477xATEx3UgnmWv/51Iy+99DJ1dXVUVFRQWDiWTz9dg1qtprGxEa/Xx0cffQT4SUpKYsaMmcOiaG63m+XLlwusq/fccw/r1q1DJBLR0dHO0qXL6Onp5Y9//CMdHR3cf//92GxWJBIpJpOJlpYWQWNJLpcxfvwEpk2bhs/n4+2332bhwoXI5XI++OAD5s6dy4YNG4CA3MHSpUv58MMPeeWVV2hubqakJEDmN3/+fHS6MN5++x3mzJnDli1bMBoN3H//XKqrq9m/fz9isViYc4H18E/YbDaKi4tJSkriwoULwnr4yivLGBgY5NChQygUCnJychgzZjR/+MMf+Id/+AdWrlwBQGNjEzk5OZw9W01JyU4MBgMPPvggb731Fl6vF6fTSV5eHgsWLBAc1Pfffx+ZTEpKSionT55k8eLFSCQS3n//fR599FHeeecdtFot1dXVggbUCL4cIzkgtwABsbOl3HffvYhECKHCuXPnUltbS1RUFLNmzUImk6FUKlm0aFFQjGwPbrebqKgoXnjhBSZPnsyJEydwOh10d3dz8uQJ0tLSWLp0Kbm5uQDU1ITKm01aWjoZGZk88sijFBaO5eDBA3R3d3PlShNms5mOjk5hFxrSFUlKSuLRRx9Fqw0jLy+P0aMzeeyxx5g+fTpnz56jp6eHI0eOkJqaglgsZu7cB1i6dBmVlZU0N7fQ09PDsmXLmDVr1rDF8ODBg6SkpPDqq68yZ86PiIqK5ujRCk6ePElERDhTp07hwIEDrFq1iunTpyMSicjOzuaVV15Bq9UKmiX5+bfx4osvERMTw+nTp+nq6hKYVqVSKcXFU5g4cSIPPPAAU6YUU1xcTFbWGK5cuUJdXR1VVWf43e9+J+zI9uzZy7hx41AolNTW1hIREcGsWbMYHBzi4sWLLF26lAULFiAWiykqKmLUqFEsWrQIg8HA2bNnqaioID4+AbvdTl9f4OrN1asBIbMtW7aQlZVFTk4OBw8ewO12Yzabee6557j77rs4evQoLpeLrq4uLl6sJTzcwuLFi9FoNISFhVFZeZyXX36ZRYsWIZVK6e3twWazcscd00hOHgXAhAkTePnll1GpVNTU1NDb24vP50Wn03H69GkqKiqIi4unuLiYO+64XSClOn26in/6p3/ikUceFaI2Pp+XF198ifvuu4/y8gAzamZmJi+88AK5ubkcPVrBnXfeyTvvvEttbQ05OTls3ryZJ554gtdff42kpM85ULq7u5k1axYvvfQy/f39PPfcc8ycOZMrV64I7ykpKWHy5Mm89tprwWM1ETNnzuT111/n0qXAF//Vq1dRKBR4PB4uXbrEgQMHSE1NxWq1MjQ0yMDAAFarTXimy+UK1vEdLl6sJS8vj6tXr+JyuYSfPp+Pjo52ent7r7NxR0cnDoeDmTPvJDo6OmjXAJ16bm4Or776KgqFnCtXriAWi7n77rt55ZVltLa2oVDIOXfu8zmSlJQkaKdMnXo7586dIzIykqVLlw07KoXAcYhOp2PZslfIysoOOi4e6us/b3NJyU4eeeQRXnzxRUwmE263m7q6OnJz85g8ufi6defSpTpsNhvLli3jiSeeoLq6mjFjRrNw4UJ0On0wAqfi8ccf58knn+TAgQNMmTKV3bt3s2HDBu644w62bdvGjBkzeO2114U6i8VioqOjqaw8RlXVaSwWM1VVVeTl5fHQQwvQ6/VotVo6OtqDeRxOuru7SUlJYf/+Ms6fv4BaraKzsxOxWMy9996HXq9n7969PPfcczzzzDOCYrdSqWTx4sWCOKPH4yE6OrAeTpo0iRMnTuJ0BsrPzs5m586dtLYGdI16e3sRicQsXbqMadOmAYHjGo1GzezZs9FqNXR3d7NgwQKWLv0nKioqglHCwDHQ5cuXGTu2kIkTJxAXF0d5+RFOnz6NyWSioqKCoqIili1bep3WzghujhEH5BZAJBIjkUgwmcyE9DdCrz/66CPIZFL+4z/+PRgKVgh8DaEkN71ej0KhQKFQDEvstFptKBSKYNkBqvdAeTKhvMBzRMTGxgGBCEJhYeEwngyfzy+EM48cOcKKFSu4++67g+FIESKRGLVaTUpKMrt370aj0RAVFYVUKsFsNiOTyfB4vAwMDCASiYT6XOuA2O12gftBrVYzceJEjhw5wrFjx7jjjjuQyxWC5LZaHbi6aLFYkEqlwtEOgNlsRiwWo1AoBCG+z/tZFPxH8Egk8LtcriAyMpJ7772Phx5awNDQED6fD5vNxrFjx7j99qmIRCIWLlyISqXiP/7jP2htbcXr9QptCR2xiESB50ydejuHDh3izJkzTJ486Qt6Mz5Bhl4ulyOXy3nkkUeRSqVBsUElcrliGEW9RqPl5MlTfPjhh8ycOROfz4fL5RI+I5VKSExM4qGHHuYvf/kLu3btHtYfIb2ZYE8wefJkDhzYT1VVFcXFk+nv72f9+g089NBDeL0+3O5A2QaDQQg7a7VhqFQq5HK5ULdQWFqpDITv9Xo9g4ODKJUBITSHw4FjVclaAAAgAElEQVRKpUYikQ7LI5BIxFgsliAjbBRKpRK9fvidSbvdTlhYGGKxWJCMD9k8MC4DRxhisZgJEyayd+9erly5Mmy3ee1xTigRUa/XMTAwgFKpHBZS/1w/yY/fH8gXCoiuSTCZjIjFYrKyxnDffffy7rvvUl5+ZFh9LRZLUJcpMB5FolD/B7RRxGIJqamp7Nq1C7VaRWJiIi+++GJQjO2/6enpQSaTIRaLMZuvl2YIHaME5pOHiRMnsGfPXpqbm8nPz6Ovrw+lUolKpUKr1aJUKnjppZeorKzkrbfevC4hdmjIgUKhQCwWo1IFNF9KS8tYs2YNd999NyKRCJVKiU4Xhlwuw+VyoVAokMvlOJ1OVCoVAwMBTpiQjUJ9PmnSJI4fP0F5eTl33DENnU7Hnj17WL9+Q7DswPoWsGPALmPHjuXUqdMcPHiQGTNmMmnSJMaPH89vf/v/UVVVxcDAAHK5jLCwMIGkLrQeKhTyYEKqD73eINTT5XIK7U1LS6O9vZ29e/cwZcoU4ThLLBYL69Gdd95Jamoav/71r2loaEAqDUR7pFJpcFMSmo8aXnjhBcrKyvjTn95n3Lgijh6toLy8nOnTp2Gz2YLjS/o/mmDu+8aIA3IL0NXVRUnJDj777LPrsrWrq8+i0+nxeDx4PG66u7tZv349n3zySVDPQ36NwzK83Pz8PA4dOsTu3bsF9cxAeTqhvNBnpFIphYVFfPrpp4wbNx6NRo1Op2P79u1s2LABv98f/DJRodfrgrkLHuHI6OrVqxQXT2HdunUUFhYiFkuEBSZQtwDzZk9PDzt27GDjxs+GLYj5+bexb98+SkpK2LRpE3FxcQIVdFRUFKWlpaSkpDB58mQ2b940rJ2ft1vEzp07KSkpobLyGFlZWdf1tcViobGxierqaqFeMpmM5ORkPvvsMzZv3kJkZCQSiYRjx46RnZ2FXh84fz579ixhYWF4vR4hwXTbtm2sW7dO0DIJ8GQgUGkDmExmMjMzOHHiBFu3buX06SqkUinjx4+nsbExSNZkE5yjUL2udVocDgdKZeDLYGBgAJVKicFgYPPmTaxdu5ahIQednZ10dHQQERGB1WpFJBKxdetWduzYQU3NBdLS0oTyUlNTaW5uERzfbdu2odGoqampQSIRo9EE1GzXrl2L0xlYxD93skTCz/3791NSUsLevXvJzc1l9erVPPXUk/T32zl37hxZWVmsWrWKzz77jHPnzl1rtev+H3LeQigqKmLjxo2UlOxg9+7d1/XPtcjLy6OyspKYmJhhJGYpKSlcuHCeHTt2UFFRgc/nCybsPk1/v50zZ84IZWZlZbFz507Wr99AR0cHZrMFkUjMtm3bWLs2YOPm5hasVisWi1mIaH1en+Ht8Hp9rF+/nk2b/srg4BBRUVEUFxezfv16CgsL8fl8VFdXExsbEzz6G83JkyfZs2c3O3fuGta+a/sm9DMvL5/KykpiYwOii7fddhvr16/nr3/9K/X1l3A6XZw7d5bY2Fh6e63XrS0h3adt27axevVqbDaboF0Uojz/3E6B8bh79y5ycnLIz89n27ZtFBYWsX79erZv3y6sMUBQfsFFZ2cXcXGxOBwO1OqAkxMQagyI4G3fvo0NG9bj8/kIDw9HrVZz+fJlRo0aRX19PU6nE61Wi8vlIjU1lfXrN7Bu3Tq6gyQ2ofVw1apPSEtLQyaTf2GMfD5OVCoVmZkZ7NtXSn5+PqmpKVy+fJldu3axZcsWAC5evBh02GUMDTmuGWfD5+PQ0BA1NTXExcXR29tLTEwsbrc7KDsQR0FBQVDTaidHjhz+H00y931ihAn1+8YqERuUDbS0tAi7u9jYWCY1KKlM99HQ0EBraysRERGMGjWKCxfOIxKJGRwcZMyYMfj9ftrb24IiYZ34fD5aWlqoqKjg2Wef5fz58/T392Mw6DGbLdjtdqG8lJQULl68SEJCAiqVitraWlasWMHPf/5zJBIJnZ2d1NfXC8llBw7sJyoqmtGjR/PWW2/x3HPPYbFYOHu2OphDoufMmWoyMjKEkH9SUhJSqYTa2otkZGTQ0tJCc3OzsFsM3VLw+XzU1dUJodjw8HCamprw+/0kJiZSW1tLbGxAWbShoRGj0YjX6yUmJob6+nosFguDgwPYbH309vYQERFJQkIC//7v/87TTz9FXFwgr8Dr9VJdXY1CocBiMeNwOImLi2NoaIiqqiokEjFZWdmoVCrq6+sxGAxCklljY6Ngp/T0dDo62qmvvyzcNEhJSRbaKRaL+e///h3jxo1n4sSJeL1eLlw4j9PpQqlUkpiYgFyuoKqqCqczUIeIiAiamppIT0+nu7sbhyOQdLpt2zbi4+NRKBQUFBSwfPlyHn30UcLDLdTWXsRkMuL3Q3x8PNXVZxCLJeTm5gSPeobo7u4mNjaWuLg4/vCHPzBt2jRycnKor69HoVAQGxtLfX097e3tiMVicnKyGRpycPHixWDkLJBD0NDQSEZGBj09PQwODqJSqbh6tQubrU/QB6mtrSUzMwOr1cbg4CDh4eGcPVuNSCQmKysrqKDsp66uLqj0qqC5+QqJiUn09PQgFouFHaPH46Gmpob+/j4yMzPp7u4hIiICjUZDTU0NycnJ/PrXv+aJJ54gPj6eCxcuYLFYhLGj1WrR6/XU1tYKEbbIyEja2tqEOg4NDeFyuYiMjEAqlVJdXS2E9zMzM7l69eowG0dFRXHu3DlkMik5Obls27YNmUxGUVERfr+PyMgo6uvriYyMoL29HZ/PT3d3N8nJyUREROD1ejlz5gzp6emoVCqqq6ux2+0kJycTGRlJTU0NVmsvRqMJnU5HdHTgZo7NZqOnp4dRo0bR0tKCXC7HYrFw4cIFwsMtWCzhOBwOqqqqkMvlSKUSkpNTqK2tZXBwkLS0NCwWy3XKz62trYLmzPbt2xkzZjRJSaP47//+b155ZRl9ff1kZGTgcDiCUT8P8fEJiEQirly5QnJyMhcuXGBgYIDRo0cLytl+v5+PP/4Yk8nErFmzePPNN7nttnzi4uL43e9+xxtv/D+IxWLq6uqCUSIRKSmptLe3Y7fbSU1Npbu7m9raWtRqFdnZOQwNDXH2bDVabRjgJz09g9raGkDE0NDQl6yHzVRWVvLss89htfZy5UozWVlZiEQi6uvr6ezsxGw2ByOPMi5dqken0zFmzBguXqwlKWkUEomEuro6YW57PB6qqqpwOBxkZmZiNBppbm7G4/GQlJSEz+fj7NmzOBwOwsLCBH2uEWbWESr2Hxa+gor9m6K9vY13332XOXN+xNixY7/RZ0tKSpDJZEybNu06j93v93Pw4EHKyspQq9WYTEYWLlz4veo6fBP4/X62bdvG6dOneeWVV753XRGn08kf/vB7nnnmH79UW+XL0N3dzdtvv820adOQy+Xs3FmCWq1BpwvjH/7hkRsqrX4ZDh48wM6du3j11Ve/dZ1+KPD7/Wzfvp2TJ0/yyiuvCE7D94nz58+zYsUKnn322W911faHhEC+024qKo6hVCqJiIjgoYce+kpq/pvB4/Hw5ptv8sgjjxAeHk5JSQknTpxAqVQSHR3N/Pnzb0jF/12jrS2wHs6dO5fbbrvt7/68r8KIAzLigPyw8B07ICEinmuPZr4uQtcUvyjkFsK15EpyufyaM/MfHkJXPUWigEz79x0CvfYq4rd9dsiWoTJCfS+TyW5qoy+Dx+PG7w8ct/1PDwnfavvC5wRT32au/RBxLbHX3zq/vzj+v8uyvwn+lvXw74ERB2REC+YHhy/XgvmmEAPfdrf/VTsSEfDtdkTfP0R8dXv+3s//W/vqi7b8W8u7lf3xXeNW2xcCy+X/SUumiG+/dtyoLPkXfr8V6sZ/y3r43WNEm+bL8X/SbPofgxEtmBGMYAQjGMH/7fjhxtRHMIwx8Gb4qr9/FW70+a96bohR8m/F1ynn6/TB18F30aZvWpev+/6v25/fph/+lv77ruz8bcsMvTfUhm8zVr8pblTed/GMv0dfXovvuh9GMILvAyMRkFuAkBbMtbjnmtcdjiEOHDjIpEmT+OSTVSxatOim2gyffbaJ/Px8Ro0a9a3qsmXLNjIyModd2ezvt7NmzRqeeOJxJJLrh8iePfuwWCzk5eV9q2eGUFpahk6np6Cg4KbvGRpysGrVShYvfvxvSmJzOBysXLmSRYsW3zDR7siRowBMnDjxpmUE9D5WcddddxMREfGVz+zr62fdunU8/vjiG/ZjCNXVZ2lra+fOO+8UXjt79ixSqZSMjAzhtfXrN1JYWEhiYuKNirkhQv13s3Z/Gc6fr6GpqfE71X45e/Y8zc1XvlaZIZvk5+fz0UcfEhMTy+zZs4dp1HxTm3wVnE4nH3/88bA519bWTllZKQ8/vFC48tncfIXW1jaKioq+Vq5BdfVZWlvbuOuuu4TXbmTjbwufL3AL5f777xd0kK7FiCbJCH6IGHFAbgGMxkAym9vtEjRG6AGLJbSLkZKbG4XF4qOjoxq93g240Wq1+P1+fL6A0qJIJKavrw65PAmFIiASJ5VKgzwTfahUKqRSKX6/X0hiDJFpud1unE4n/f2XkUojMRoDGhoAYrGLzs6z6HQufL4hNBotEEjCGxoaYmioCZEoUN/+/n7kcjkKhUJgDQzdxb/2mWKxWCDTEolEKJVKnM4W/H4nSmU/SqVymIPh9/uDRGYO2tvPYDJ5kMkCCbOhXXFIWwMCZGchQjGNRiOoUQ4MDKDVahka8tLefga93onfH+AaCGhEuBkcHMLtbkUkEmE0eobVO5BQ5xP6u7v7AhrNFORym1BGqH9D9RKJRAwODuD1DtDZeRaz2Y9I5BbK+KI9RKJuBgcbUansyGQy5HI56enGIBFXSMHXhdV6EaUyA7PZJ4gCftGpCNVZLA5o+wwMuIPtdg1rdwihsaJWqxGLxYjF4iCnhRexuBu7vQG1egCJRCLcLAoRzIVI79xuN4ODg+h0Onw+37AyvjgOJJIeBgebhpXp9wfGUeBapByv1zPMJn19WuTyPhYtegqZLMANEmDsdQa1TS6g1U69znbBkRSsQyBxNWSj0HgM/T/UX05nYM7pdC5EosCcs9kG6O6uISwsoHqsUqmQybTodGbMZp/A4RKaW6H+9Xjc2O0DhIWFIRJ1MzQUsLFUKkWhUJCebhTWgy/W+4vzNVT3kJp1qAwgqG7tobPzHGFhd2MyBeZbiIxNIpGMaJKM4AeJEQfkFuBf//VfCQvT0tV1lSVLlnDmzBnGFQQWm/fee48HH5zHrl27efzxx7HZ+li+fDltba3Mn7+AiIgINm7cSGtrC3PnzsXn87Nx40Z8Pj/x8fEsWbKEdevW0t7eQWNjI/fccw+1tbUsXrwYv9/HihUrWbBgAe+99x5SqZSLFy8yfvx4tmzZQk1NDT09Pfz4xz+mq6uL5cuX09nZyYMPPkhaWhpvvvkmEFDfTUhI4NChg1RWVmKxWLjnnntZvXo17e3tpKam4nQ6uf/+H6HXG1i+fDkzZkxnxYqVhIWF0dfXx2uvvQrAnj17qKoKqNC+8MILqNVq/H4/paWl7N+/H5FIxMDAIKdOnaazs5M5c+awefNmIiIiOHu2mtbWNnS6MObOfYB169ai1WqZP38Ba9eupaenh4GBAXJzc5g9ezZWa0BH4urVq9xzzz0UFIzlrbfewu1209LSwrRpd/Dee+/x8MMPo1Qq+OCDPzNp0iTKysq4cuUKTz/9FB6Ph1WrVmG327nttttIT0+nvr6euXPnsn37diIiIujq6qKyshKfz4fT6aCrq4u1a9fS1hbYMbe2trJo0SIAVqz4mMzM0VRWVtLV1cXg4CCvv/46jY2N9PX1IRLBu+++h1wu58KFC8yePYtt27ZSX3+Z2NhYHnjggWE3DPbu3YtarWbSpEmsWLGCsWMLgvoZf6Sr6yr33XcfkyZNEgS6Vq5cSXNzMwaDgdGjR9PXZyM3N4/Dhw+RmJjEyZMnsVp7sdvtvPba61y8WEtZ2X56enqIjo5i3rwH+eijj/B4PBQXF9Pb20tUVBQymYy2tjaamhp59NHHEIvF/OUvfyE7O5sTJ45jt9ux2Wy8+OILVFWdoaqqisjISObMmc0777w7zCa7d++mqqqKQ4cOCRTaDQ0NfPjhhygUChoaGujp6WHr1q0888wz1NTUcPbsWRQKBRcuXKC7u5t/+Zd/ISwsTCDievjhh1mz5lOSkpKQyxVMmzaNNWvWMGbMGPr6+nn//ffp7u5mxowZxMfHU19fz1tvvUl7ewdLly7F5XJx8OBBrl69SlNTE+PHj2fv3r089thjSKVSbDYbf/zjchwOB7m5eeh0Oiorj9PVdXWYjTs6AvP0H//xGXp7rWzevBmTyURsbCxSqZSuri7uvfdeIBAxWbVqFRqNhqGhIV5//XXa2tr45JNPkMvltLa20N7ewebNW3jqqac4deoUV65c4f777//e1rYRjOCbYCQH5Bago6ODp59+mgcffJDS0lJSU1OBwB329vZ2tNowGhsbBHXRhx9+iCeeWMLevXtJSkriscceQ63WkJWVDcD48RP4yU9+wvnz52lvb+fMmWqeffZZIiMjSUlJQa/Xc+xYBadOnUKtVlNeXs5tt93GsmXLiI2NRSwWM2fOHPLycsnKykKtVqNQKHjsscd48sklbNq0iWPHjpGUlMSrr74q6I4cP36CzMxMfvSj+zGZTDz11FNotRomTBhPXFwcpaWlXLx4Ebfbhdfrw+v1smzZMkaPzuTUqdMAjBkzhmXLliKTyQTmTLfbzZ49u/nxj3/MY489hkQiISkpiYMHD9Lf3x/Unkll8eLHMZlMTJgwgbq6OpRKFfPnz8dgMNDS0sy0adN47bXXqKg4htPpQiqV8dBDD/Pcc8+zZcsWqqpOo9fref311xg9ejRisYTIyAgOHTrEuXPnEYvFFBQU8OCDD2I0Ghk1KhkQMWPGDF599VWOHDkiMMP29/dz6NAhwsPDOXDgAC+//DIPPfQQIpGYiIhwlixZglKpZPz4cRgMBioqKqiqqkKpDESp4uLiWLZsGQaDgbq6OqxWK93d3ezbV0pxcTFLly4lIiIcn89PZeVxioqKuOeee64L/6elpbJr105sNivV1dWEh0cgk8lYuHAhzz77LJs3bxZ22U1NTVy+fJnXX3+dRYsWMW5cERUVx3jvvfeYNGkyYrGYmJgYli5dRnh4BDU1NezZs5d58+YxbdodWCzh7NxZQlFREW+88VMKCgooLi5m7dq1bNy4keLiYkwmM+Xl5Zw5cyZImCUlJiaWF154gezsbMrK9nP8+HFycnKYM2c2589fuM4mU6fezm235TN16lQgEP0oKdnBnDlzeOmlF9Hp9BgMBjo6OmhpaaGsrIyEhARmz55NXl4eWVlZAodKXFwcXq+HX/7yl6SnZ5CTk8uePXvo6+vjxIkTREdHI5VKmT9/Pi+88ALbtm3D43Gj1+t59tnnmDBhPMeOVTA4OEhbWyt5ebmcPn2aN998k0mTJgm08QcO7Cc+PoGf/vQNod4hGxuNRurq6rDZrIKwXXX1WcrLywkPD2fq1KmsWbOGjRs3MmHCBMHGdrsduVzOq6++SlRUFOfPn2fHju0sWLCAH//4x2g0WiwWM5cvX6ajo4N9+/Z9o+O6EYzg+8aIA3ILoNPpMBgMqNUqHA4Ho0cHFEPLykqZMmUKUunnnA8ajRqz2RJUm3Xi8/lYs+ZT7rrrLgwGA2KxiJiYGCEUHzqKePfdd9FqtcTExAR1Vso5erSC6dOn0dXViU6nQ6FQCOfmXV2d7N9/QNhRh4WFYTDo0WoDVOCBz4Qhk8mIjIwCYPHixXR2dvGrX/0Ku93Ovn37iIqKJj094zqdB5FIRHh4eFC6XCXQfUdHRyGRSNFoNNjtAaprj8eD3T6AWq3GYrGgVCoEhtLS0lIiIyMxm82cOHECt9tNYWERxcXFpKam8Ktf/Yq6ujrEYgkxMQGJdp8vIIWu0WgwmYxoNGocDgddXVfRaDRIJFKBgXLcuPFUVlZy+PAhZs6cgdfrZdWqVTz44IPBIy0J0dHRQXl3L2FhYURGRlBaWorJZMRg0As06hER4YJdtmzZQn5+PrGxcUycOIEjR45w9OhRpk+fHuyHaEHfJ9Q3AJ2dnRgMAb0Yi8WCWCzm2Wf/kdOnT/Hb3/52mH4MQGxsHC6Xm9LSUnJyclCr1Wg0GgwGIxqNBodjSEhUDFC8BxyggBy7GpPJxNWrVwXl4sjISKFeLpcTnU7HypUrOXnyFOPHj6e314rRaEQikaLT6dDpdMJxQVhYGBMmTODo0XLKy8uZMWM6IlGgTJlMhk6no7+/nyVLltDU1MSvf/0bmpqarrNJIOdDNIwL5erVq+h0OtRqTfD5EgoLC9m3bx9tbW3k5ubS1dXF/v37mTdvnhAlEovFJCWN4uLFWhIS4omMjEQqlVJaWkpaWlqwH1SYTCbUajVOpxOv14fZbEaj0aBSqXE4PrePXB6YQ+3t7UREfK72/Hm/SAS20KioqOtsLBKJmDx5Evv37+fMmTMUFxdf14fXIjIyEqVSGTzCdHL1ajc6nY6wsDB0Oh1SqYy8vDz27duHzWYT1IhHMIIfIkYckFsMkUgk5Fjs3r3nK9n7Lly4wMWLdUilUjo7O6/7u9vtRiwWCXTATqeThIQErFYrvb0B3YL8/NvYvXs3hw4dvEYv41OSk0dx6dIl3G43zc3N7NhRwoYNG8jMzCQ/P58DBw5y5MgRDh48CMDly5fJyMgQ6N63bNlCYmIiDQ0NgrNx9uzZL1WH3LUrUI+qqtNCJEipVBIVFcWOHTvYsmULVmtAN6W4eDIrV65k/PjxOJ1OPv30U9LT06mrq6O5uRmj0YRebxB0I76Izs5Otm7dxmefbSQpaRQ5OTkcP36c8vJy9u3bC0BMTDRer5eGhkaSkkZx9OhR+voCFN4hSfDh9oPi4mJWrlzJuHHj0WrD0Ot17Nq1i02bNjMwYKelpZWDBw9isVhobm4mISGR/v5+urq6vpJRs6CggB07drB//35OnTqNz+ejsbGJ7OwcOjs7BVG+EKRSKQUFBXz66Zrg7jkQcdu+fTufffYZyckpwhd5XFwcbW1tlJWVsnHjRo4cOYxUKuWee+5h/fp1N7xRMTQ0hMGgJyYmBpfLRX5+Plu3bhVYc3fu3ElhYSHR0dGUlZUSFxfH4OAQ7e3tJCQEduNHjhzm0KGD7NoV0BlpaGhg9OhMrFYrKSkp19kk0M/DIz2h5+7du4eamhoAiooK2bt3LwkJCSiVStasWcOoUaO4dKlOcNQ6OtqpqKjgJz/5KR9/vAKfz8e4ceP45JNVQgJyd/dVtm7dyl//+lfi4+O/NHn3zJkzuFwu5s2bx5o1a4WbLjk5Oezdu5dDhw6xc+dOQrkoN0JmZia1tbWCSNrOnTspKioK9mHZTW+2iMVicnNz2bJlC7t27eLy5ctAQBF569atpKenfe+MwCMYwTeB5Be/+MWtrgPLly//xTPPPHOrq/H94My/4c58M6iLoSQmJobw8HBiuv8Nf/a7pKWl4XK5OXDgADNnziQmJpbY2FgUCjlRUdGYzWZ0Oh1OpxODwUBSUhJxcXGoVCrCw8ORyaTU1dVx77330tLSwpkzZygsLCQpKYn8/DwiIiKIjIxApVLhdruZOnUqycmj0Gi0grpuYmIiqakpwo747rvvJjIyUlA+DUUbXC43nZ2d3H777SQkJKDVavF6vSgUCqKiokhOTmbMmNHEx8ejVCqIjg60VavVEhsbaFdaWhp9ff3MnDmTUaNGCQl9IQ2S2NhYioqKiIuLIyoqitjYWMaOHYtYLBbouEMLd0hXZfz48YSHhxMXFxuM8kQSFxdPUlISer0etVrNrFmzCA8PJzw8nL4+GxMnTiI9PR2DwUBycjI5OdlER8fg9XoJC9PhcDgIDw8nISGRuLg4lMpAuTExsURGRhETE8PYsWNRKpVkZAQ0RUaNGkVBQQERERGEhYXhdrtRq9VERESQnJxMXl7AHmq1mujoaEwmE3q9nri4WJqampBKJUybNg2pVIbP52Pq1KmMGjUKq9WKzWbjnnvuITIyctiXs0gkIi4ujoSEBHJycpBKpSQmJhIWFkZYWBizZs0aJm2ekfH/t3fv0VXVd97HP9/k5EISyI0kYEADA2JBRJlUsDBdCoNSh2rt2IvtqowPlU5rn5HaGR+1M/PMzHqWlzXTsTNrWVsctbZ2rLa2o0u7nCp1ylhEjYqKGIGKShghIZALJCG33/PH2aSJIrmdfM85yfu11lnZ+7f32ed7fnuf5JO999l7nurrG1RVVaXc3Fydd97HtHDhmTLLUFVVlSorK1VaWqrCwkKVl5fr2We39O19+9GPfqgrr7wyOsm3re+Q4LJly7Rw4Znq6enV9OnTNXv2LJ111iJVVFRo0qRJmjdvntra2vXRj35UixYt0qFDh3TwYKNWrFihBQsWqLy8fMA6KSsr6/ucHH+Pp556qrq7u5WTk63ly/9IVVVVKioqUmVlpc4999y+O7Ye36ZnzJihWCympqZmLVgwX2eeeaaKi4tVUlKi0047TTNmzNSiRYsUi8U0c+apKi4uVk5OjtasWdN3j5aKigrl5+frlFNOUXt7u/7nf/5H8+adrnPPXaIzzzxTsVhMFRUVysiI3/l36tSpam5u1oIFC6JtZLpKSkoHrOPMzEwtXHiWqqqqVF1draKiIh09elQf+1h8PfT29qq8vLzvTrXTp58SrY8pqqys1IIFC9TR0aH8/HwtX75cp512moqLi1VZWaklS5b0HXpqa5OifA+42rhxo9avX//3J5rGpdi9DXIp9u7uLv3gB/GT+r7yla8M+3LCBw4c0J133qmSkhJ1dnZqzZo/0RlnfCRR1cPBzp07dc89d2v9+q9o9uzZyS6nT1dXl77//e+pszO+l23OnLm6+OKLUxT7JVwAACAASURBVPoS/WPhwIED+u53v6vVq1ef9GvbJ+O9jrkkOJKFe8GkkkECSAhBbW1tys7OHtF1L47fg6GrK37SZU5OTkrcEwFD19XVpc7OTuXl5aXcuuvu7lZHR7vMMlKyPg89PT1qb2/v++rySHivYwIIkoV7waSYk98LxiTlq61tpEs/fg+G+LHf1taRLgfJkyUpaxTbwFiKSYqfGJma9XnIlFSg9vbRLMN3HXNPEqQiAkgScC8YAMBEN7EO3gIAgJRAAAEAAO4IIAAAwB3ngHjLP0369xOcEJzPJZMBABMHAcRZ26odAy61PcDhw77FAADcxWKxD9yZeiIigDj79re/rcbGRk2aNCnZpSAJjh49qj179ujMM89MdilIku3bt6uqqkoFBQXJLgVJ0Nvbq8bGRn3ve9/ru3nhRDWx330SdHd364YbblBFRUWyS0ES7N27V/fff79uvPHGZJeCJLn11lt1xRVXcKfaCaq7u1vXX3/9h97jZyIhgCTJRN/1NtGx/ie24/c8Gkx7e7vMrO/+PcB4QgBJsu7ubt1006Pau7dFHR0dysvL14IFC7R48eK+eRoaGjRpUq4KCgbemrujo13Nzc0qL//9DcmKiqSlS13fAkZp61bpiSee1fTp03XaaVU6eLBBr7zyilasWCkzY51OAM8+G7RrV4OefvppHTt2TPn5+Vq1apWeeeYZFRZO0bJlywfMzzaB8YCv4SZZZmam/vAPV2rNmqU6eLBWV165WsuXz1NOTot6ew/IrEFPPvnv2rXrWRUUtCsv76iys5vV3v6uDhx4XQ8//H3l5LRo6tSgsjLpBHeMR4prapL27dumY8f2qaxMyspq0s6dW1RWJtbpBFFXd0T33nubzjprutauvVjLl89Tbm6rsrKaFIsdVkvL75SV1cTnHOMKe0CSzMxUWFionp525eTkqLi4RF1dXfqrv/orlZeXa+nSpaqtrVVDQ73Kysr0wgsvaMeO17V48R+qo6NDu3bt0qZNm3TppZcqMzMz2W8Ho7Bnz1sqKChQXV2dent7k10OHL322ms69dTTtGzZMjU3N2vatGkqLCyUJD322ON6++13VFe3V3/7t/9XeXl5Sa4WSAwCSEoK6u3t0de+9jWVl5fr7bf3aOHCs3TOOedo8+bNWr36E7roootUW1urxsZGXXbZZZxTkOZCkF5+eZv27z+gpqamCXeL+4mutbVV5eVlOnbsmB577DFt375dF110kSRp5cqV+tM//VP93d/9nerrD6iqalaSqwUSg99yKSo3N1f5+fkfaDczlZaWEjjGGTPp05/+tP7yL/9Sf/Znayf81/MmmqqqKr300suSpC996Uuqrq5WW3Sr3OPXi8jIMPX28s0JjB8EkBRhZgP+6PQfnjNnjjZv3qza2jeUmZmp49mjtLRUhw4d0qZNm9hln+YyM2P99noYh9MmmD/4g9maNWuWbr31Vj300EN6/vnnNHnyZGVkZPRtF5mZMf7xwLjCv1kpoqSkRNdcc40yMjKUnZ2jb3zjur6v3p1//vmaPfsPVFRUpM997rPKy4vvGSkrK9N1112nrq4ufjGlucsuu6xvfc+YMUPr1q1LckXwFItl6eqrv6z9+/erra1dy5Yt07Rp09Ta2toXRq+++ssqLi5JcqVA4hBAUkRWVpZOOeUUSfG9IZWVlX3TYrEszZ49+wPPMTNNnz7drUaMnalTp/YN5+bmatq0aUmsBskQi2VpxoyZA9qKi4v7hqdN47OO8YUA4qy9vV133XWXJk/+/TU93njjNBUUtCdk+UeOTFJt7TsJWRYSr6mpSTU1NfrOd77T1zbY+medji9btmxRR0fHgHAx3N8BbBPpq7e3V/v37092GSmBAOIsOztb559//oD/eKdNy1VLS2KO+U+Z0qNFi85IyLKQeO+9956am5v7vuEgDb7+Wafjy7vvvquPf/zjfXs8peH/DmCbSF/d3d3auXNnsstICQQQZ5mZmZo7d+6AXewf+UgSC4Kr/Px8lZWV6SP9Vjrrf2IpKyvTnDlzBtwLhm1g4ujq6uJmpBECSArYulU6dKhXBw8e1LFjx5SXl6eSkhK9+uqrKikp0cyZMz/wHC7FPH7893936d13W1RSUiIzU2dnp44cOaLi4mIuxT5B/Pa33dqz57BKS+N7RpuampSXl6ecnJwTzs82gfGAr+GmgMbGbj3++A/0859/Xzt2/EZPPPEjtbW9o7fffl5HjuxRaWlv3yWYuTz3+FNXd0R33XWzCgraVVYm1dW9rM2bH2ZdTyB1dUd1333/pJKSbpWVSY888m86cmTPgM88n3+MN+wBSQG1tW9qz549+ta3vqWcnBz19PT0TXvttdf03HPPacGCBVq9ejVXyByHpkyZosmTJ2v37t1auHChtmzZogsuOJ+vVk8oQceOdaqnp1dmvers7FR3d7cef/xxrVixQmamTZs26cILL1RWVlayiwUSgr9mKWD37l2qrq5Wd3eXfvzj+3XPPffovffeUwhSW1ubrrji83rqqafUxL8941JGRoZWrVqlLVt+q9bWVh08eFCnnz4v2WXBWV1dnf7mb/5GN910k1588UVlZGTonXfe0SuvbNPu3bu1fft2LlCHcYUAkgLy8/PV2Nio3NxJWrXqQh07dky7du2SmbRkyRKdckqlsrOz1d6emK/qIrWYmRYsWKDf/e4tvfTSi5o3bx4nqU1AFRUV+ou/+N/6xjc2aP78+TIzLV++XM8884y2bn1WF1xwAXtAMa6wNaeARYvO1vPPP6eamhrl5GSru7ub3e8TzJQpU1RRUa6f/OQnWrJkCet/AsrOzlZFxTRVVEzru+PtnDlzVFe3T7W1tZo/f36SKwQSi3NAUsDUqVN13XXf1JNPPqmamheUl5fX9x9QeXm5JGnx4sXchnscy8jI0Jo1a/TUU0+pqqoq2eXAWVZWtqqrq/uC58KFC1VYWKhJkyZpzZo/0ZEjR094c0ognRFAUoCZ6fTTT9fcuXMHtB0PH5L0mc98JhmlwdG8eWdo3jwuLjURTZo0SVdccYWk+Gd/zZo1fcMrV/5x3zAwnhBAnIUQdPDgwQHHcpuaspSZObzbbDc1merruxJdHsZYY2Ojjh49qvr6+r62wdY/63p8OXr0qA4ePDjgPJ/m5izFYkP/HcA2kb66urrU1cW6kwgg7trb23XPPfeooKCgr62urlIdHcM76TA3t107duxLdHkYY83NzXrttdcGfJthsPXPuh5fnn32WbW2tqqwsLCvbbi/A9gm0ldPT48OHDiQ7DJSAgHEWV5enr761a9yt9MJ6t1339X999+vm266KdmlIEluueUWfeELXxhwKXZMHF1dXbr++uuTXUZK4FswKSCE0PfoP46Jo/82cPxx6NChARelCyGop6dHIQQ1Njaqt7c3iRUjkTo7O7nODyYc9oCkgF/9qkX/8R9P65OfvERm0i9/+UstXbqk774Q78d9IMaXrVulxx57Rq+/vkPZ2dlasmSJ5s07Xbfffreuuup/qbS0VJJ07Ngx/fSnP9Ull1yq7353o6655uuaPHnygGWxbaSnBx7Yo0cf3awvf/nLg55syjrGeMEekBRQX9+pN9/8bd/9Xt566znFYk3KymrS1KlBxcVdfcPcB2L8aWqSDhzYriVLZuvTn16uX/zi+yoq6lJvb72yspp04MB2TZ7coVNOydZll/2RKiuz1NNzQJmZh1Rf/7oKCzu5R0iaa2qSQqhXW9s7amt7R1OnBpWU9OjIkT1qbKyV1KDS0l7WMcYV9oCkiNbWFr3wwvOSTIcOHVJra6vuv/9HuuGGG7Vt28uqrX1Ta9euTXaZGEN79+5VT0+Ppk2bpszMmNrb2/TAAw8oNzdHU6YU6qqrrtJdd92lDRs2qLW1VQ899JBycnL0zDPP6Oqrr+YqmWlu27ZtKisr044dO/T1r39d+/bt044dO9Te3q6WlmbdeONNH3p3XCAdEUBSREtLq154oUZm0uHDh1VYWKj8/ALt3LlTv/3tFl100UVcB2AcC0HauXOnjh49qpaWVrW0tCgnJ1dr165VXl6ebr75ZvX0dKu9vV0hBOXn52vt2rXKz8/XX//1X6u9vZ0LVaW5+fPna926dXr44YdVW/uG9u/fr0WLFqmnp0e1tbWED4w7BJAUUVlZqa997WvKyMhQfX2DMjJMH/vYx/TEE0/o6NGjOv3005NdIsaQmfTJT35S5513nm677Ta99dZbysjIUE5OjjIyMqITUwc+JyPD1Nvbq+7ubk5aHgdyc3OVkZGhjAxTT0+vMjNj+s1vfqOysqm65JJLkl0ekHDss00BZlJOTnbfeHZ2liTTwoULtXPnTp1xxhncgnuci8Vi2rx5s+699161traqqqpK2dnZMjOZxbeJ/jvAOjs7de+9P9Add9yhhQsXcpn+NJeRkdH3GY/FYsrMzFRGRoba2trU3NyiLVu2DPhGFDAesAckBRQVFenaazf0HcP/8z//qgoLCxWLxXTzzTeroKCAwy/j3OWXX67m5haZmb74xS8oJydXGzZsUHFxsSTpuuu+qY6ODmVlZSkvL0//8A//oIyMDHV0tKu8vILzP9LcqaeeqnnzrpIkrVz5x+rp6dE//uM/au3atZo0aZK+/e1/0oUXXshhNowrBJAUEItlqaysrG986tTff/22//1gMH4VFRWrqKh4QFv/baK0tFQPPvigPvrRjyovL2/AlXSR/nJyclRaGj/HY/LkyQohaNWqVXr88ceVmZmpL3zhi+zlwrhDAHHW29urO+64Y8B/Mm++OUsFBW1DXsaRI3natm3PWJSHMdbS0qLt27fr1ltv7Wsbzvrv7DymH/7wvg+dzraR+rZu3arW1lZNmTKlr+3DtoHi4iJJ0o4dr2vHjtclsY7TXW9vrw4dOpTsMlICAcTZtddeq9bW1gFtL72UrdbWoe9Cnzy5V4sXn5vo0pAkw13/J8O2kfo+97nPfaBtONsA6zj95eTkKBbjzy894Gzq1KkDDrFI0qxZSSoGKYH1D7YBTERDCiBm9rakVkk9krpDCNVmViLpQUlVkt6W9NkQwmGLny35L5IultQm6c9CCC8lvvT0tHVr/EqGXE4ZADCRDWe/7wUhhLNDCNXR+A2SNoUQ5kraFI1L0ickzY0e6yXdmahix4OmJi6ZDQDAaA48Xyrp+Nlw90n6VL/2H4a4rZKKzGz6KF4HAACMM0MNIEHSr8zsRTNbH7VVhBDei4b3S6qIhisl7e333LqobQAzW29mNWZW09DQMILSAQBAuhrqSajLQwj7zKxc0pNmVtt/YgghmNmwrgUdQtgoaaMkVVdXcx1pAAAmkCHtAQkh7It+1kv6haRzJR04fmgl+lkfzb5P0sx+T58RtQEAAEgaQgAxs3wzm3x8WNKFkrZLelTS8fvDr5X0SDT8qKQrLW6ppOZ+h2oAAACGdAimQtIvonuRxCT9ewjhCTN7QdJDZrZO0juSPhvN/0vFv4K7W/Gv4V6V8KoBAEBaGzSAhBDekrToBO2NklaeoD1IuiYh1QEAgHGJW2g6KyqSGhriPwEAmKi4FLszrn4KAAB7QAAAQBIQQAAAgDsCCAAAcEcAAQAA7gggAADAHQEEAAC4I4AAAAB3BBAAAOCOAAIAANwRQAAAgDsCCAAAcEcAAQAA7gggAADAHQEEAAC4I4AAAAB3BBAAAOCOAAIAANwRQAAAgDsCCAAAcEcAAQAA7gggAADAHQEEAAC4I4AAAAB3BBAAAOCOAAIAANwRQAAAgDsCCAAAcEcAAQAA7gggAADAHQEEAAC4I4AAAAB3BBAAAOCOAAIAANwRQAAAgDsCCAAAcEcAAQAA7gggAADAHQEEAAC4I4AAAAB3BBAAAOCOAAIAANwRQAAAgDsCCAAAcEcAAQAA7gggAADAHQEEAAC4I4AAAAB3BBAAAOCOAAIAANwRQAAAgDsCCAAAcEcAAQAA7gggAADAHQEEAAC4I4AAAAB3BBAAAOCOAAIAANwRQAAAgDsCCAAAcEcAAQAA7gggAADAHQEEAAC4I4AAAAB3BBAAAOCOAAIAANwRQAAAgDsCCAAAcEcAAQAA7gggAADAHQEEAAC4I4AAAAB3Qw4gZpZpZi+b2WPR+Cwze87MdpvZg2aWHbXnROO7o+lVY1M6AABIV8PZA3KtpDf6jd8m6fYQwhxJhyWti9rXSToctd8ezQcAANBnSAHEzGZI+hNJ/xaNm6QVkn4WzXKfpE9Fw5dG44qmr4zmBwAAkDT0PSDfkXS9pN5ovFRSUwihOxqvk1QZDVdK2itJ0fTmaP4BzGy9mdWYWU1DQ8MIywcAAOlo0ABiZmsk1YcQXkzkC4cQNoYQqkMI1WVlZYlcNAAASHGxIcyzTNIlZnaxpFxJUyT9i6QiM4tFezlmSNoXzb9P0kxJdWYWk1QoqTHhlQMAgLQ16B6QEMKNIYQZIYQqSZ+X9OsQwhclPS3p8mi2tZIeiYYfjcYVTf91CCEktGoAAJDWRnMdkP8j6Toz2634OR53R+13SyqN2q+TdMPoSgQAAOPNUA7B9Akh/Jek/4qG35J07gnm6ZD0mQTUBgAAximuhAoAANwRQAAAgDsCCAAAcEcAAQAA7gggAADAHQEEAAC4I4AAAAB3BBAAAOCOAAIAANwRQAAAgDsCCAAAcEcAAQAA7gggAADAHQEEAAC4I4AAAAB3BBAAAOCOAAIAANwRQAAAgDsCCAAAcEcAAQAA7gggAADAHQEEAAC4I4AAAAB3BBAAAOCOAAIAANwRQAAAgDsCCAAAcEcAAQAA7gggAADAHQEEAAC4I4AAAAB3BBAAAOCOAAIAANwRQAAAgDsCCAAAcEcAAQAA7gggAADAHQEEAAC4I4AAAAB3BBAAAOCOAAIAANwRQAAAgDsCCAAAcEcAAQAA7gggAADAHQEEAAC4I4AAAAB3BBAAAOCOAAIAANwRQAAAgDsCCAAAcEcAAQAA7gggAADAHQEEAAC4I4AAAAB3BBAAAOCOAAIAANwRQAAAgDsCCAAAcEcAAQAA7gggAADAHQEEAAC4I4AAAAB3BBAAAOCOAAIAANwRQAAAgDsCCAAAcEcAAQAA7gggAADAHQEEAAC4I4AAAAB3BBAAAOCOAAIAANwNGkDMLNfMnjezV8zsdTP7+6h9lpk9Z2a7zexBM8uO2nOi8d3R9KqxfQsAACDdDGUPyDFJK0IIiySdLWm1mS2VdJuk20MIcyQdlrQumn+dpMNR++3RfAAAAH0GDSAh7kg0mhU9gqQVkn4Wtd8n6VPR8KXRuKLpK83MElYxAABIe0M6B8TMMs1sm6R6SU9K+p2kphBCdzRLnaTKaLhS0l5JiqY3SypNZNEAACC9DSmAhBB6QghnS5oh6VxJZ4z2hc1svZnVmFlNQ0PDaBcHAADSyLC+BRNCaJL0tKTzJBWZWSyaNEPSvmh4n6SZkhRNL5TUeIJlbQwhVIcQqsvKykZYPgAASEdD+RZMmZkVRcOTJK2S9IbiQeTyaLa1kh6Jhh+NxhVN/3UIISSyaAAAkN5ig8+i6ZLuM7NMxQPLQyGEx8xsh6SfmNn/k/SypLuj+e+W9CMz2y3pkKTPj0HdAAAgjQ0aQEIIr0o65wTtbyl+Psj72zskfSYh1QEAgHGJK6ECAAB3BBAAAOCOAAIAANwRQAAAgDsCCAAAcEcAAQAA7gggAADAHQEEAAC4I4AAAAB3BBAAAOCOAAIAANwRQAAAgDsCCAAAcEcAAQAA7gggAADAHQEEAAC4I4AAAAB3BBAAAOCOAAIAANwRQAAAgDsCCAAAcEcAAQAA7gggAADAHQEEAAC4I4AAAAB3BBAAAOCOAAIAANwRQAAAgDsCCAAAcEcAAQAA7gggAADAHQEEAAC4I4AAAAB3BBAAAOCOAAIAANwRQAAAgDsCCAAAcEcAAQAA7gggAADAHQEEAAC4I4AAAAB3BBAAAOCOAAIAANwRQAAAgDsCCAAAcEcAAQAA7gggAADAHQEEAAC4I4AAAAB3BBAAAOCOAAIAANwRQAAAgDsCCAAAcEcAAQAA7gggAADAHQEEAAC4I4AAAAB3BBAAAOCOAAIAANwRQAAAgDsCCAAAcEcAAQAA7gggAADAHQEEAAC4I4AAAAB3BBAAAOCOAAIAANwRQAAAgDsCCAAAcEcAAQAA7gggAADAHQEEAAC4I4AAAAB3BBAAAOBu0ABiZjPN7Gkz22Fmr5vZtVF7iZk9aWa7op/FUbuZ2b+a2W4ze9XMFo/1mwAAAOllKHtAuiV9M4QwX9JSSdeY2XxJN0jaFEKYK2lTNC5Jn5A0N3qsl3RnwqsGAABpbdAAEkJ4L4TwUjTcKukNSZWSLpV0XzTbfZI+FQ1fKumHIW6rpCIzm57wygEAQNoa1jkgZlYl6RxJz0mqCCG8F03aL6kiGq6UtLff0+qitvcva72Z1ZhZTUNDwzDLBgAA6WzIAcTMCiQ9LGlDCKGl/7QQQpAUhvPCIYSNIYTqEEJ1WVnZcJ4KAADS3JACiJllKR4+fhxC+HnUfOD4oZXoZ33Uvk/SzH5PnxG1AQAASBrat2BM0t2S3ggh/HO/SY9KWhsNr5X0SL/2K6NvwyyV1NzvUA0AAIBiQ5hnmaQvSXrNzLZFbTdJulXSQ2a2TtI7kj4bTfulpIsl7ZbUJumqhFYMAADS3qABJITwjCT7kMkrTzB/kHTNKOsCAADjGFdCBQAA7gggAADAHQEEAAC4I4AAAAB3BBAAAOCOAAIAANwRQAAAgDsCCAAAcEcAAQAA7gggAADAHQEEAAC4I4AAAAB3BBAAAOCOAAIAANwRQAAAgDsCCAAAcEcAAQAA7gggAADAHQEEAAC4I4AAAAB3BBAAAOCOAAIAANwRQAAAgDsCCAAAcEcAAQAA7gggAADAHQEEAAC4I4AAAAB3BBAAAOCOAAIAANwRQAAAgDsCCAAAcEcAAQAA7gggAADAHQEEAAC4I4AAAAB3BBAAAOCOAAIAANwRQAAAgDsCCAAAcEcAAQAA7gggAADAHQEEAAC4I4AAAAB3BBAAAOCOAAIAANwRQAAAgDsCCAAAcEcAAQAA7gggAADAHQEEAAC4I4AAAAB3BBAAAOCOAAIAANwRQAAAgDsCCAAAcEcAAQAA7gggAADAHQEEAAC4I4CkgRdvuUUv3nJLyi9zLJY70escy2Wn8nLHsj8T/VqetQ4mlWoZTCrVmk7bQKp/voaz7NiYVICEOvzmm2mxzLFY7kSvcyyXncrLHcv+TPRredY6mFSqZTCpVGs6bQOp/vkazrLZAwIAANwRQAAAgDsCCAAAcEcAAQAA7gggAADAHQEEAAC4I4AAAAB3BBAAAOCOAAIAANwRQAAAgDsCCAAAcEcAAQAA7gYNIGZ2j5nVm9n2fm0lZvakme2KfhZH7WZm/2pmu83sVTNbPJbFAwCA9DSUPSA/kLT6fW03SNoUQpgraVM0LkmfkDQ3eqyXdGdiygQAAOPJoAEkhLBZ0qH3NV8q6b5o+D5Jn+rX/sMQt1VSkZlNT1SxfTZsiD/GtQ3Ro39TIt53Ipd7gmV9YJbhLHsIyxvL5SZ6mWPRr6PaBgapeazW1UlfY5jLGcv3P+hrpXCto0WtQ3ytFN4GRlvrhy7npDOP7DUisRE+ryKE8F40vF9SRTRcKWlvv/nqorb39D5mtl7xvSQ69dRTh/fq27YNb/60dIL3mJD3fXwZVQlY7hCeN6xlD2PesVhuopc5Fv06qm1gkOeO1bo66WsMczlj+f4Hfa0UrnW0qHWIr5XC28Boa/3Q5Zx05pG9RmTUJ6GGEIKkMILnbQwhVIcQqsvKykZbBgAASCMjDSAHjh9aiX7WR+37JM3sN9+MqA0AAKDPSAPIo5LWRsNrJT3Sr/3K6NswSyU19ztUAwAAIGkI54CY2QOSzpc01czqJP1fSbdKesjM1kl6R9Jno9l/KeliSbsltUm6agxqBgAAaW7QABJCuOJDJq08wbxB0jWjLQoAAIxvXAkVAAC4I4AAAAB3BBAAAOCOAAIAANwRQAAAgDsCCAAAcEcAAQAA7gggAADAHQEEAAC4I4AAAAB3BBAAAOCOAAIAANwRQAAAgDsCCAAAcEcAAQAA7gggAADAHQEEAAC4I4AAAAB3BBAAAOCOAAIAANwRQAAAgDsCCAAAcEcAAQAA7gggAADAHQEEAAC4I4AAAAB3BBAAAOCOAAIAANwRQAAAgDsCCAAAcEcAAQAA7gggAADAHQEEAAC4I4AAAAB3BBAAAOCOAAIAANwRQAAAgDsCCAAAcEcAAQAA7gggAADAHQEEAAC4I4AAAAB3BBAAAOCOAAIAANwRQAAAgDsCCAAAcEcAAQAA7gggAADAHQEEAAC4I4AAAAB3BBAAAOCOAAIAANwRQAAAgDsCCAAAcEcAAQAA7gggAADAHQEEAAC4I4AAAAB3BBAAAOCOAAIAANwRQAAAgDsCCAAAcEcAAQAA7gggAADAHQEEAAC4I4AAAAB3BBAAAOCOAAIAANwRQAAAgLtYsgsYkbPPTnYFDn7/HovnzYsPFBUlbLnF8yr6NY20Pz/4vL5aR7TsISxvLJc7imWOfnlDXPaotv1Bah5ln37ock/6GideTmLW+weePMrXSn6tgzlp35/05SZ2rem0DYy21pMu44TLOZlh/M4+AQshDOPFxkZ1dXWoqalJdhkAACCBqqurVVNTYyeaxiEYAADgjgACAADcEUAAAIC7MQkgZrbazN40s91mdsNYvAYAAEhfCQ8gZpYp6Q5Jn5A0X9IVZjY/0a8DAADS11jsATlX0u4QwlshhE5JP5F06Ri8DgAASFNjcR2QSkl7+43XSVry/pnMbL2k9dHoMTPbPga1TDRTJR1MdhHjBH2ZGPRj4tCXiUE/JsZQ+/G0D5uQtAuRhRA2StooSWZWE0KoTlYt4wX9mDj0ZWLQj4lDXyYGN5/OLQAABH9JREFU/ZgYiejHsTgEs0/SzH7jM6I2AAAASWMTQF6QNNfMZplZtqTPS3p0DF4HAACkqYQfggkhdJvZ1yX9p6RMSfeEEF4f5GkbE13HBEU/Jg59mRj0Y+LQl4lBPybGqPsxJe4FAwAAJhauhAoAANwRQAAAgLukBxAu2z50ZnaPmdX3v2aKmZWY2ZNmtiv6WRy1m5n9a9Svr5rZ4uRVnlrMbKaZPW1mO8zsdTO7NmqnL4fJzHLN7HkzeyXqy7+P2meZ2XNRnz0YnZAuM8uJxndH06uSWX+qMbNMM3vZzB6LxunHYTKzt83sNTPbZmY1URuf7REwsyIz+5mZ1ZrZG2Z2XiL7MqkBhMu2D9sPJK1+X9sNkjaFEOZK2hSNS/E+nRs91ku606nGdNAt6ZshhPmSlkq6Jtru6MvhOyZpRQhhkaSzJa02s6WSbpN0ewhhjqTDktZF86+TdDhqvz2aD793raQ3+o3TjyNzQQjh7H7XqeCzPTL/IumJEMIZkhYpvm0mri9DCEl7SDpP0n/2G79R0o3JrCnVH5KqJG3vN/6mpOnR8HRJb0bD35d0xYnm4/GBPn1E0ir6ctT9mCfpJcWvfHxQUixq7/ucK/7tuPOi4Vg0nyW79lR4KH7NpE2SVkh6TJLRjyPqx7clTX1fG5/t4fdjoaQ979+uEtmXyT4Ec6LLtlcmqZZ0VRFCeC8a3i+pIhqmb4cg2nV9jqTnRF+OSHTYYJukeklPSvqdpKYQQnc0S//+6uvLaHqzpFLfilPWdyRdL6k3Gi8V/TgSQdKvzOzF6JYfEp/tkZglqUHSvdFhwX8zs3wlsC+THUCQQCEeO/le9RCZWYGkhyVtCCG09J9GXw5dCKEnhHC24v/BnyvpjCSXlHbMbI2k+hDCi8muZRxYHkJYrPghgWvM7OP9J/LZHrKYpMWS7gwhnCPpqH5/uEXS6Psy2QGEy7aP3gEzmy5J0c/6qJ2+PQkzy1I8fPw4hPDzqJm+HIUQQpOkpxU/VFBkZscvdNi/v/r6MppeKKnRudRUtEzSJWb2tuJ3EF+h+PF3+nGYQgj7op/1kn6heCjmsz18dZLqQgjPReM/UzyQJKwvkx1AuGz76D0qaW00vFbx8xmOt18ZnZm8VFJzv91mE5qZmaS7Jb0RQvjnfpPoy2EyszIzK4qGJyl+Ls0bigeRy6PZ3t+Xx/v4ckm/jv6LmtBCCDeGEGaEEKoU/z346xDCF0U/DouZ5ZvZ5OPDki6UtF18tocthLBf0l4zmxc1rZS0Q4nsyxQ40eViSTsVP278rWTXk8oPSQ9Iek9Sl+LpdJ3ix303Sdol6SlJJdG8pvg3jH4n6TVJ1cmuP1UekpYrvtvwVUnbosfF9OWI+vIsSS9Hfbld0t9G7bMlPS9pt6SfSsqJ2nOj8d3R9NnJfg+p9pB0vqTH6McR9d1sSa9Ej9eP/03hsz3i/jxbUk30+f4PScWJ7EsuxQ4AANwl+xAMAACYgAggAADAHQEEAAC4I4AAAAB3BBAAAOCOAAIAANwRQAAAgLv/DzavB10apTbYAAAAAElFTkSuQmCC\n" - }, - "metadata": {}, - "execution_count": 5 - } - ], - "source": [ - "ax = fig.add_subplot(111, aspect=\"equal\")\n", + "## Overall Algorithm\n", "\n", - "def add_rectangle(ax, bbox, color):\n", - " ax.add_patch(\n", - " patches.Rectangle(\n", - " (bbox[0], bbox[1]), bbox[2] - bbox[0], bbox[3] - bbox[1],\n", - " fill=False, color=color\n", - " )\n", - " )\n", + "The hybrid parser combines results from the network parser and the lattice parser to get the \"best of both worlds.\" Before we look at the combination itself, let's see how each of the two parsers work.\n", "\n", - "add_rectangle(ax, (71.039971584, 766.039693584, 78.46358609455301, 792.439683024), \"blue\") # most aligned\n", - "add_rectangle(ax, [71.039971584, 766.039693584, 528.2376647048496, 792.439683024], \"green\") # current bbox\n", - "add_rectangle(ax, (71.039971584, 550.759779696, 78.46358609455301, 595.879761648), \"orange\") # t considered\n", + "### Network parser\n", "\n", - "col_bounds = [[15.110600000000002, 85.17270800000026], [91.35392000000013, 111.20462000000025], [117.41954000000024, 135.20402000000024], [145.73642000000024, 159.08282000000023], [171.77798000000024, 185.12438000000023], [197.81954000000025, 211.16594000000023], [221.57774000000023, 239.36222000000024], [247.61930000000024, 265.4037800000002], [275.87192000000005, 289.2825800000003], [306.4158200000003, 310.88606000000027], [325.73594000000026, 343.52042000000023], [358.4989400000002, 362.96918000000016], [377.81906000000015, 395.6035400000001], [429.90218000000016, 447.68666000000013], [481.98530000000017, 499.76978000000014], [514.7483000000002, 519.2185400000002], [534.0684200000002, 551.8529000000002], [566.8314200000002, 571.3016600000002], [588.37064, 601.7813000000002], [614.4282800000001, 627.8228600000002], [640.5180200000002, 653.8644800000004], [666.5033000000001, 679.9059800000002], [692.6011400000002, 705.9556400000006], [718.6427000000002, 731.9891000000002]]\n", - "for bound in col_bounds:\n", - " ax.plot(\n", - " [bound[0], bound[0]],\n", - " [10, 100],\n", - " color=\"red\",\n", - " )\n", - "for bound in col_bounds:\n", - " ax.plot(\n", - " [bound[1], bound[1]],\n", - " [10, 100],\n", - " color=\"yellow\",\n", - " )\n", - "col_splits = [88.2633140000002, 114.31208000000024, 140.47022000000024, 165.43040000000025, 191.47196000000025, 216.37184000000025, 243.49076000000025, 270.6378500000001, 297.8492000000003, 318.31100000000026, 351.00968000000023, 370.39412000000016, 412.75286000000017, 464.8359800000002, 507.25904000000014, 526.6434800000002, 559.3421600000001, 579.8361500000001, 608.1047900000001, 634.1704400000002, 660.1838900000002, 686.2535600000002]\n", - "for col_split in col_splits:\n", - " ax.plot(\n", - " [col_split, col_split],\n", - " [10, 120],\n", - " color=\"brown\",\n", - " )\n", - "fig\n" + "The network parser is text-based: it relies on the bounding boxes of the text elements encoded in the .pdf document to identify patterns indicative of a table.\n", + "\n", + "The plot belows shows the bounding boxes of all the text elements on the parsed document, in light blue for horizontal elements, light red for vertical elements (rare in most documents)." ] }, { @@ -234,7 +103,226 @@ "execution_count": null, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "# Parse file\n", + "flavor = \"network\"\n", + "timer_before_parse = time.perf_counter()\n", + "tables = camelot.read_pdf(filename, flavor=flavor, debug=True, **kwargs)\n", + "timer_after_parse = time.perf_counter()\n", + "\n", + "if tables:\n", + " fig, ax = init_figure_and_axis(f\"Text elements in PDF\\n{pdf_file}\")\n", + " camelot.plot(tables[0], kind=\"text\", ax=ax)\n", + "else:\n", + " print(\"No table found for this document.\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Network parser - step 1: Identify a network of connected alignments\n", + "\n", + "The network parser starts by identifying common horizontal (shown in green on the plot below) or vertical (in blue) coordinate alignments across these text elements. In other words it looks for bounding box rectangles which either share the same top, center, or bottom coordinates (horizontal axis), or the same left, right, or middle coordinates (vertical axis). See the `generate` method.\n", + "\n", + "Once the parser found these alignments, it performs some pruning to only keep text elements that are part of a network - they have connections along both axis The idea is that it's not enough for two elements to be aligned to belong to a table, for instance the lines of text in this paragraph are all left-aligned, but they do not form a network. The pruning is done iteratively, see `remove_unconnected_edges` method.\n", + "\n", + "Once the network is pruned, the parser keeps track of how many alignments each text element belongs to: that's the number on top (vertical alignments) or to the left of each alignment in the plot below. The text element with the most connections (in red on the plot) is the starting point -the *seed*- of the next step. Finally, the parser measures how far the alignments are from one another, to determine a plausible search zone around each cell for the next stage of growing the table. See `compute_plausible_gaps` method." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "if tables:\n", + " fig, ax = init_figure_and_axis(f\"Text edges in PDF\\n{pdf_file}\")\n", + " camelot.plot(tables[0], kind=\"textedge\", ax=ax)\n", + "else:\n", + " print(f\"No table found for document {pdf_file}.\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Network parser - step 2: Detect table body iteratively from seed\n", + "\n", + "In the next step, the parser iteratively \"grows\" a table, starting from the seed identified in the previous step. The bounding box is initialized with the bounding box of the seed, then it iteratively searches for text elements that are close to the bounding box, then grows the table to ingest them, until there are no more text elements to ingest. The two steps are:\n", + "* Search: create a search bounding box by expanding the current table bounding box in all directions, based on the plausible gap numbers determined above. Search bounding boxes are shown in orange on the graph below. \n", + "* Grow: if a networked text element is found in this search area, expand the table bounding box so that it includes this new element. Each successive table bounding box is shown in red in the plot below.\n", + "\n", + "Notice in the plot below how the search area and the table bounding box grow starting from the seed. See method `search_table_body`.\n", + "\n", + "#### Network parser - step 3: Search for a header section\n", + "\n", + "Headers are often aligned differently from the rest of the table. To account for this, the network parser searches for text elements that are good candidates for a header section: these text elements are just above the bounding box of the body of the table, and they fit within the rows identified in the table body. See the method `search_header_from_body_bbox`." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "if tables:\n", + " fig, ax = init_figure_and_axis(f\"Growth steps for table in PDF\\n{pdf_file}\")\n", + " camelot.plot(tables[0], kind=\"network_table_search\", ax=ax)\n", + "else:\n", + " print(\"No table found for this document.\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Network parser - step 4: Repeat\n", + "\n", + "There are sometimes multiple tables on one page. So once a first table is identified, all the text edges it contains are removed, and the algorithm is repeated until no new network is identified.\n", + "\n", + "The final parse for this .pdf is as follows:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "display_parse_results(tables, timer_after_parse - timer_before_parse, flavor)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Lattice parser\n", + "\n", + "The lattice parser is based on an analyzis of the image from the .pdf, rather than its text content. It relies on the borders of the tables to be solid vertical lines.\n", + "\n", + "#### Lattice parser - step 1: Identify solid lines within the document.\n", + "\n", + "The lattice parser relies on the OpenCV library (`getStructuringElement` function) to detect all solid vertical and horizontal lines within the document." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Parse file\n", + "flavor = \"lattice\"\n", + "timer_before_parse = time.perf_counter()\n", + "tables = camelot.read_pdf(filename, flavor=flavor, debug=True, **kwargs)\n", + "timer_after_parse = time.perf_counter()\n", + "\n", + "if tables:\n", + " fig, ax = init_figure_and_axis(f\"Line structure in PDF\\n{pdf_file}\")\n", + " camelot.plot(tables[0], kind=\"line\", ax=ax)\n", + "else:\n", + " print(\"No table found for this document.\")\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Lattice parser - step 2: Find the contours of the table(s) based on the solid lines.\n", + "\n", + "The lattice parser then uses OpenCV's `findContours` function to detect the overall bounding box of the table(s), since the solid lines might draw more than one table." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "for table in tables:\n", + " fig, ax = init_figure_and_axis(f\"Contour structure in PDF\\n{pdf_file}\")\n", + " camelot.plot(table, kind=\"contour\", ax=ax)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Lattice parser - step 3: Identify joints\n", + "\n", + "For each table bounding box (contour), the lattice parser then makes a list of all the intersections between vertical and horizontal lines: the joints." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "for table in tables:\n", + " fig, ax = init_figure_and_axis(f\"Joint structure in PDF\\n{pdf_file}\")\n", + " camelot.plot(table, kind=\"joint\", ax=ax)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Lattice parser - step 4: Identify rows and columns\n", + "\n", + "In the final step, the algorithm sorts all the x coordinates of the joints to identify the position of the table's columns, and the y coordinates for the table's rows. See method `_generate_columns_and_rows`.\n", + "\n", + "The resulting lattice parse for the .pdf is as follows." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "display_parse_results(tables, timer_after_parse - timer_before_parse, flavor)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Combining results of Network and Lattice with the Hybrid parser\n", + "\n", + "The hybrid parser aims to combine the strengths of the Network parser (identifying cells based on text alignments) and of the Lattice parser (relying on solid lines to determine tables rows and columns boundaries).\n", + "\n", + "#### Hybrid parser - step 1: Apply both parsers table bounding box detection techniques to the document\n", + "\n", + "In this step, hybrid calls both parsers, to get a) the standard table parse, b) the coordinates of the rows and columns boundaries, and c) the table boundaries (or contour).\n", + "\n", + "#### Hybrid parser - step 2: Merge the results\n", + "\n", + "If there are areas in the document where both lattice and network found a table, the hybrid parser uses the results from network, but enhances them based on the rows/columns boundaries identified by lattice in the area. Because lattice uses the solid lines detected on the document, the coordinates for b) and c) detected by Lattice are generally more precise. See the `_merge_bbox_analysis` method.\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "flavor = \"hybrid\"\n", + "timer_before_parse = time.perf_counter()\n", + "tables = camelot.read_pdf(filename, flavor=flavor, debug=True, **kwargs)\n", + "timer_after_parse = time.perf_counter()\n", + "\n", + "display_parse_results(tables, timer_after_parse - timer_before_parse, flavor)" + ] } ], "metadata": { diff --git a/parser-comparison-notebook.ipynb b/parser-comparison-notebook.ipynb index 2e1f9db..0dba42f 100644 --- a/parser-comparison-notebook.ipynb +++ b/parser-comparison-notebook.ipynb @@ -4,70 +4,39 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Common import and setup\n" + "# Parser comparison\n", + "\n", + "This notebook lets you visualize side-by-side how each parser analyzes a document, and compare the resulting tables.\n" ] }, { "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": "'/Users/francoishuet/Code/camelot/camelot/__init__.py'" - }, - "metadata": {}, - "execution_count": 1 - } - ], + "execution_count": null, + "metadata": { + "tags": [] + }, + "outputs": [], "source": [ - "import os, sys, time, pytest\n", - "\n", - "import matplotlib.pyplot as plt\n", - "from matplotlib import patches, lines\n", - "import numpy as np\n", - "import pandas as pd\n", - "from pandas.testing import assert_frame_equal\n", - "\n", - "import pdfminer\n", - "\n", - "from IPython.display import display\n", - "\n", - "# Make sure we use the local version of camelot if it is here\n", - "sys.path.insert(0, os.path.abspath(''))\n", - "\n", + "# Bootstrap and common imports\n", + "import os, sys, time\n", + "sys.path.insert(0, os.path.abspath('')) # Prefer the local version of camelot if available\n", "import camelot\n", - "from camelot.core import Table, TableList, TextEdges\n", - "from camelot.__version__ import generate_version\n", - "from camelot.utils import get_text_objects, text_in_bbox\n", - "from camelot.parsers.stream import Stream\n", - "from camelot.parsers.lattice import Lattice\n", - "from camelot.parsers.network import Network\n", - "from camelot.parsers.hybrid import Hybrid\n", - "from camelot.handlers import PDFHandler\n", - "from camelot.plotting import draw_pdf\n", - "from tests.data import *\n", "\n", - "testdir = os.path.dirname(os.path.abspath('.'))\n", - "testdir = os.path.join(testdir, \"camelot/tests/files\")\n", - "\n", - "# To check which library we're using\n", - "camelot.__file__\n" + "print(f\"Using Camelot v{camelot.__version__} from file {camelot.__file__}.\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## Selection of file to review\n", + "## Select a PDF file to review\n", "\n", "This is seeded with the unit test files for convenience." ] }, { "cell_type": "code", - "execution_count": 26, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -83,61 +52,34 @@ "# pdf_file, kwargs = \"tabula/us-007.pdf\", {\"table_regions\": [\"320,335,573,505\"]} # test_hybrid_table_regions\n", "# pdf_file, kwargs = \"detect_vertical_false.pdf\", {\"strip_text\": \" ,\\n\"} # data_stream_strip_text\n", "# pdf_file, kwargs, data = \"tabula/m27.pdf\", {\"columns\": [\"72,95,209,327,442,529,566,606,683\"], \"split_text\": True, }, data_stream_split_text # data_stream_split_text\n", - "# pdf_file = \"vertical_header.pdf\"\n", + "pdf_file = \"vertical_header.pdf\"\n", "\n", "# pdf_file, kwargs = \"vertical_header.pdf\", {\"pages\": \"2\"}\n", "\n", "# pdf_file, kwargs = \"PIR_Prospetto.dOfferta.pdf\", {\"pages\": \"6\"}\n", "# pdf_file = \"twotables_2.pdf\" # Lattice is better\n", - "pdf_file = \"camelot-issue-132-multiple-tables.pdf\"\n", + "# pdf_file = \"camelot-issue-132-multiple-tables.pdf\"\n", "# pdf_file, kwargs, data = \"edge_tol.pdf\", {\"edge_tol\": 500}, data_stream_edge_tol\n", "# pdf_file, kwargs, data = \"edge_tol.pdf\", {}, data_stream_edge_tol\n", "# pdf_file, kwargs = \"tabula/icdar2013-dataset/competition-dataset-us/us-030.pdf\", {\"pages\": \"2\"} # test_lattice\n", "# pdf_file, kwargs = \"background_lines_1.pdf\", {\"process_background\": True} # test_lattice_process_background\n", "\n", - "filename = os.path.join(testdir, pdf_file)" + "filename = os.path.join(\n", + " os.path.dirname(os.path.abspath('.')),\n", + " \"camelot/tests/files\",\n", + " pdf_file\n", + ")\n" ] }, { "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": "##### stream ####\nFound 1 table(s):\n## Table 0 ##\n" - }, - { - "output_type": "display_data", - "data": { - "text/plain": " 0 1 2 3\n0 1 Ghfhbdhj 1 Hgfdhgjsdhjdsf\n1 Vgvhgh Hj Hj Hj\n2 Hj Hj Hj Hj\n3 Hj Hj J Hj\n4 V C D Gfhj\n5 Hjb B Jhbh Hj\n6 Hjdhshj Hjhjhh Ddnj dsxv", - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
0123
01Ghfhbdhj1Hgfdhgjsdhjdsf
1VgvhghHjHjHj
2HjHjHjHj
3HjHjJHj
4VCDGfhj
5HjbBJhbhHj
6HjdhshjHjhjhhDdnjdsxv
\n
" - }, - "metadata": {} - }, - { - "output_type": "stream", - "name": "stdout", - "text": "\n##### lattice ####\nFound 1 table(s):\n## Table 0 ##\nSame as stream table 0.\n##### network ####\nFound 2 table(s):\n## Table 0 ##\nSame as stream table 0, lattice table 0.\n## Table 1 ##\n" - }, - { - "output_type": "display_data", - "data": { - "text/plain": " 0 1 2\n0 Trtrt H Gh\n1 Gh V Hv\n2 Hv Bhjb hg", - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
012
0TrtrtHGh
1GhVHv
2HvBhjbhg
\n
" - }, - "metadata": {} - }, - { - "output_type": "stream", - "name": "stdout", - "text": "\n##### hybrid ####\nFound 2 table(s):\n## Table 0 ##\nSame as stream table 0, lattice table 0, network table 0.\n## Table 1 ##\nSame as network table 1.\n" - } - ], + "execution_count": null, + "metadata": { + "tags": [] + }, + "outputs": [], "source": [ "FLAVORS = [\"stream\", \"lattice\", \"network\", \"hybrid\"]\n", - "PLOT_HEIGHT = 12\n", "tables_parsed = {}\n", "parses = {}\n", "max_tables = 0\n", @@ -185,27 +127,24 @@ }, { "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": "
", - "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", - "image/png": "iVBORw0KGgoAAAANSUhEUgAACl4AAAYSCAYAAABTNwTHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdebglVXk37N+joGgUo4Lz0Cg4Cyo4mwRj0ETjgEOcDXGI8/zGxJhE9HX+NIpR4ywOLxqNQY0axURwwCCigOIISqs4oICMgiis74+1Nmdz+pzu6ubA6abv+7rqqr2rVq21qvZuzkPtp9aq1loAAAAAAAAAAAAA2LDLrHYHAAAAAAAAAAAAALYUEi8BAAAAAAAAAAAAJpJ4CQAAAAAAAAAAADCRxEsAAAAAAAAAAACAiSReAgAAAAAAAAAAAEwk8RIAAAAAAAAAAABgIomXAAAAAFxqVdUhVdWq6pCVKLfS7V6cqmrf0Ye2EuU2ot3dq+rQqjpr1PuRqtpz1kZV7bkS7bByNofvKwAAAABsSbZZ7Q4AAAAAwMaqqm2TPDfJY5LcMMl5SX6Z5JgkL22tHT6KfivJdmO9tTkhyZdXod13JNktydlJvpLku6vQBzbO1vzvBAAAAAA2msRLAAAAALZEr0ryrPH6uPQkvxsmuV+SA5McniSttaesSu82A621tyd5+yo0fcuxfl1r7e+TZHMe5bKqLtdaO3e1+7EaqmqbJOdtzf9OAAAAAGBTmGocAAAAgC3Rw8f6/7bWdmmt7Zrk95PcOSPpMll6CuWqul5VfaKqzq6qH1bVXy/VQFVdrqr+saq+W1W/qaqTq+qAqrrexnS0qv66qtaO9j45O76qXj769pOquuxc+feM7YdtoN4/HVN6/2rUfXxVHVhVO43960whPs7pDVV1alWdUlX7JbncMvU/rKoOG1OGn1VVn62qu66nP3uOtmYPez9/tL/vMuV3r6r/qaqfjet7VlV9paoeNVfmU6OOjy869pix/W3j/WWr6rlV9c1R1+mjv/dY3L+xPKGqDq6qc5Ism3Q4+viRqjpp1PvDqnrh3P4bjM/r51X12/FZvrWqrjFXZv/R5tqqetRYn1FVb6qq7arqZeOz+GlV/dPccWvm+vvcqnp/VZ1ZVb+oqhdWVc2VfW9VHTvqPXf08/VVtf0y/dinqo5Pcm6Sqyzz7+RRVfW1cS3PqqrvVdUHquoqc2XuV1VfGP06p6qOrqonL+rb7BxeOb57J49z2K964icAAAAAbHEkXgIAAACwJZrd19qrqu5bVddq3WGttQ1Nl/zhJPdOcvkkZyV5bZI9lin34iQ7p0+XXekJn4dW1VUn9nOPUf+vR3t/NupNkjcnOT/JdZL8adITI5Pcd+zff7lKq2qHJB9NcpckZ4z+bZ/kAUmuu57+vCTJU5NcJclp43yesUT9z03y/iR3TPKzJCcnuXuSg6vqzsvUfXouPLX5T8b7E5Ypv1OSPZP8Jsk3x3qPJO+tqvuMMvuP9T1n17yqbp2FUTVn+9+S5NVJbpHkx+kJhXdPclBV/dkSbb8hya2S/CD9M1hHVd0lyZeS3D/92h6b5Aqj3ozkyv9N8uj0pN/vJdkxyROSfLGqrrSoymunf+a/S3KlJE9O8tX0z+PMsf9FVbXXEt15aZI/SL/GOybZdxw/s3eSqyb5/jj/GyR5evq074tdZ2w/N8kvljn3XZO8J8ltR5nvJ7lmkocmufIo86j07+Dd0v8d/SzJrknelORlS1T77PTv29njHJ6R5K+Wah8AAAAANncSLwEAAADYEr1prO+U5GNJflZ9ZMoXV9UVlzuoqu6e5A7j7bNba7dIsnt6UuR8uT9M8ufj7Z+NETVvlOSk9KS2qVMzXz7J7qOd54xtd6iqu7fWfphkNpLj48b6HulJfL9J8oH11HvD9JEqz0hys9babVprV0+yW3oS5jrGdXn6eHvgOJ+dsigxcpR70Xj78tbazknWJDkoybbpyajraK19rbV2p7lNb2+t3WlMeb6UQ5Ncp7W2prV2u/SEwOPGvoeN9UeSnDrafdCifce21g6tqhsneezY9sbR353SEyUvk55sutiXklx/fC5vXKZ/L0m/xqcl2a21dqv05MNnj/1PHX1uSf6gtXbL9Knuk2SXrJtUeLkk90pyk/TkyFm53dITRs8Z2+6Rdf1v+mewJgsjuv7t3P67tdZ2GN+DG6cnaibJA6pqu0V1bZvkKa21m6Yne562RHu7pCcaH5vkJuP7f9X0f2+njDKzNo5I/z7eKAvf2edW1dUW1XnCKLNzkp+u51wBAAAAYLMn8RIAAACALU5rbd8kD0wfce/0sfkmSf4xfaS+5dx67vUHR13fSfL1ReXuOPf609Wn0P5Vkh3GtjslSfWpvQ+bW+6zqJ6vj/qT5N/mtt9qrGdJf39eVTsmefB4/9HW2qmjjcMWLbdLHyHyB+mjD/6iqo6sqvelJ/CdtMy575xkloT3oTFC6FlJPrGo3C2T/N54/fxx7ucluef8ua+A85O8Zkyx/bv0kRB3HvuukySttXOycN1mCZcPHev9x3r39CTBJDlgHHdGFpJab1NzU7kPbxl1p7V23jL9m30HDmytfXuUba21I8f224/1ca21r4z9n0r/niTrjqL6q9baoa2185P8aGw7prW2trV2ZhZGn7zmEn35j9ba71pr56YnoybJDarqyuP1PapPv372+LxeMLZvkz665Lyzk7xt7nxa1nXoOI9dkpxSVV8Zx1yttfbrMdrnDeauzzmjnvePbdumJ5TO+1hr7bRx3Y9fz7kCAAAAwGZvm9XuAAAAAABsitbagUkOrKpKcrskbx3r+1bVZUaC20o4PH1Uw3mzxLnbpo/2N7M4yW1DPpM+quAu6aM23n9s33+uzB0XHbN9a+2cqto9fZrrO6YnXD4iySPTRzF87Ub2YznfybojIi6VqLcp3pfkT0Z930qfbvsW6cmk84mS+yd5YpI9q+q+SW6cnrS5vgTbDTnxIhy7qU6fe/27JbbNrmtlI1TVI9OnWU/6dN8/Tk8QvtHYtjjp9Jcb+rfRWvt5Vd0y/fu1e3rC8mOTPLaqHpiemLmxTp17PTv/jTpXAAAAANhcGPESAAAAgC1OVb2kqm6TXDBq31fTkwST5Iz1JJYdM/f6IaOumybZdVG5r8y9/ucxZfadktw5yfOSvGW0vaa1VnPL/ovq2XXUf0F78/0YowT+69j2j0munp48d9Cs4KL6q7V2SFVtn+TmSd7QWnvUmKp7dswfL3Pux2VhOusHVXfFJPdeVO6bSX49Xn82yZ3nzn+fJC9cpv6NNRs5821jGu97pydfXkhr7bD0z/ay6cm1SfLfrbXZFOlfzULS4sOTZIwEOZsq/qglRrWckjz65bF+QFXdZLaxqmYjOc6+IztX1e3Hvj9Nn5I76VNwr5S9q2qbqrpcFpJzfzRG9pxdxzOS7NRau2Pmvj9L2OC5V9V1kuzYWntVa+2hY0r22b+vP26t/SILycd7V9V2IwH64WPbb5McPfnsAAAAAGALI/ESAAAAgC3R45McWVW/rKqvVtUP00d8TBamO17KwVlIiHtdVX0zydfSp9K+QGvtkCT/Nd5+oKq+V1XfSB/98XPpI2tO8ZskXxvtvG5sO6K1dvBcmXelJzrOpvd+33qmv565RpIvJTm5qr5eVd9Jcq+xb/G06bNz+nUWpjZ/UPpU5WuT7LREuReNt09J8tMxlfkvknw7C9f5opr18/Hj+nw/C1OhL/busb7WWL9rrr/fT/LO8fZpVXVc+lTWu6SPjPkPm9i/f0hybpLfT3JMVX2jqn6eZL+x/43pSbKV5AtVdUySj419x833cQXcIf2cjs/CCKivGuvZdbxykh9U1Q+S/MVFbO8WSY6uql9U1VGjzpstam82nfke6d+jH2RhOvjXtNZOuYh9AAAAAIDNlsRLAAAAALZE/5Dko+mj/N0sPSHv2CQvS/J/ljtojDD5wCSfSk+qu8qo67Aliu+dPrrjd9KnE79eenLZa5IcMrGfRyR5dpIrjfY+Ndqf79OpSQ6Y2/TubNjJ6Yl9P0uyZvTv+0lemYWkyaW8IH2EzdPTR2b8SBYSCef79Kr0acsPS7J9kpukTxX97iRvn9C/KfZJT4Q9J8kVkzwryySNJnlvehJlRj8+smj/E5P8TfqU5ddPcvlR9z1ba/+VTdBa+1KSu6R/z05PctP0RNpDxv5fpI82+d7Rp5sm+WX69blra22d0TsvgheMdrdPclKS/5vkTWPfO5L889h+5VHuny5iez9I/06emp7Aeo30a/t3GZ9/a+196aNvHjravXb65/eUJH9/EdsHAAAAgM1a9XvNAAAAAMBqqarnpCd0fqW1dofV7g+rr6rWpI9wmSR/tcQ09gAAAADAKtlmtTsAAAAAAFurqnpgkocn+bOx6VXrKQ4AAAAAwGbAVOMAAAAAsHp2TfLgJGcn+afW2r+vcn8AAAAAANgAU40DAAAAAAAAAAAATGTESwAAAAAAAAAAAICJJF4CAAAAAAAAAAAATCTxEgAAAAAAAAAAAGAiiZcAAAAAAAAAAAAAE0m8BAAAAAAAAAAAAJhI4iUAAAAAAAAAAADARBIvAQAAAAAAAAAAACaSeAkAAAAAAAAAAAAwkcRLAAAAAAAAAAAAgIkkXgIAAAAAAAAAAABMJPESAAAAAAAAAAAAYCKJlwAAAAAAAAAAAAATSbwEAAAAAAAAAAAAmEjiJQAAAAAAAAAAAMBEEi8BAAAAAAAAAAAAJpJ4CQAAAAAAAAAAADCRxEsAAAAAAAAAAACAiSReAgAAAAAAAAAAAEwk8RIAAAAAAAAAAABgIomXAAAAAAAAAAAAABNJvAQAAAAAAAAAAACYSOIlAAAAAAAAAAAAwEQSLwEAAAAAAAAAAAAmkngJAAAAAAAAAAAAMJHESwAAAAAAAAAAAICJJF4CAAAAAAAAAAAATCTxEgAAAAAAAAAAAGAiiZcAAAAAAAAAAAAAE0m8BAAAAAAAAAAAAJhI4iUAAAAAAAAAAADARBIvAQAAAAAAAAAAACaSeAkAAAAAAAAAAAAwkcRLAAAAAAAAAAAAgIkkXgIAAAAAAAAAAABMJPESAAAAAAAAAAAAYCKJlwAAAAAAAAAAAAATSbwEAAAAAAAAAAAAmEjiJQAAAAAAAAAAAMBEEi8BAAAAAAAAAAAAJpJ4CQAAAAAAAAAAADCRxEsAAAAAAAAAAACAiSReAgAAAAAAAAAAAEwk8RIAAAAAAAAAAABgIomXAAAAAAAAAAAAABNJvAQAAAAAAAAAAACYSOIlAAAAAAAAAAAAwEQSLwEAAAAAAAAAAAAmkngJAAAAAAAAAAAAMJHESwAAAAAAAAAAAICJJF4CAAAAAAAAAAAATCTxEgAAAAAAAAAAAGAiiZcAAAAAAAAAAAAAE0m8BAAAAAAAAAAAAJhI4iUAAAAAAAAAAADARBIvAQAAAAAAAAAAACaSeAkAAAAAAAAAAAAwkcRLAAAAAAAAAAAAgIkkXgIAAAAAAAAAAABMJPESAAAAAAAAAAAAYCKJlwAAAAAAAAAAAAATSbwEAAAAAAAAAAAAmEjiJQAAAAAAAAAAAMBEEi8BAAAAAAAAAAAAJpJ4CQAAAAAAAAAAADCRxEsAAAAAAAAAAACAiSReAgAAAAAAAAAAAEwk8RIAAAAAAAAAAABgIomXAAAAAAAAAAAAABNJvAQAAAAAAAAAAACYSOIlAAAAAAAAAAAAwEQSLwEAAAAAAAAAAAAmkngJAAAAAAAAAAAAMJHESwAAAAAAAAAAAICJJF4CAAAAAAAAAAAATCTxEgAAAAAAAAAAAGAiiZcAAAAAAAAAAAAAE0m8BAAAAAAAAAAAAJhI4iUAAAAAAAAAAADARBIvAQAAAAAAAAAAACaSeAkAAAAAAAAAAAAwkcRLAAAAAAAAAAAAgIkkXgIAAAAAAAAAAABMJPESAAAAAAAAAAAAYCKJlwAAAAAAAAAAAAATSbwEAAAAAAAAAAAAmEjiJQAAAAAAAAAAAMBEEi8BAAAAAAAAAAAAJpJ4CQAAAAAAAAAAADCRxEsAAAAAAAAAAACAiSReAgAAAAAAAAAAAEwk8RIAAAAAAAAAAABgIomXAAAAAAAAAAAAABNJvAQAAAAAAAAAAACYSOIlAAAAAAAAAAAAwEQSLwEAAAAAAAAAAAAmkngJAAAAAAAAAAAAMJHESwAAAAAAAAAAAICJJF4CAAAAAAAAAAAATCTxEgAAAAAAAAAAAGAiiZcAAAAAAAAAAAAAE0m8BAAAAAAAAAAAAJhI4iUAAAAAAAAAAADARBIvAQAAAAAAAAAAACaSeAkAAAAAAAAAAAAwkcRLAAAAAAAAAAAAgIkkXgIAAAAAAAAAAABMJPESAAAAAAAAAAAAYCKJlwAAAAAAAAAAAAATSbwEAAAAAAAAAAAAmEjiJQAAAAAAAAAAAMBEEi8BAAAAAAAAAAAAJpJ4CQAAAAAAAAAAADCRxEsAAAAAAAAAAACAiSReAgAAAAAAAAAAAEwk8RIAAAAAAAAAAABgIomXAAAAAAAAAAAAABNJvAQAAAAAAAAAAACYSOIlAAAAAAAAAAAAwEQSLwEAAAAAAAAAAAAmkngJAAAAAAAAAAAAMJHESwAAAAAAAAAAAICJJF4CAAAAAAAAAAAATCTxEgAAAAAAAAAAAGAiiZcAAAAAAAAAAAAAE0m8BAAAAAAAAAAAAJhI4iUAAAAAAAAAAADARBIvAQAAAAAAAAAAACaSeAkAAACrrKraWNZcDHXvO+ref6XrBgCAS4Oq2nPEzGtXuy8AAGwZLuo93Yty37aq1o5j91xm/z5j/1Gb0jdgGomXwBatqg4ZAcM+q90XAAC4pFTV/iMO3nfR9qVu9h2WZL8kB11yPQQAgI1TVWtm8exq9wUAADZz70y/53vCancEtmbbrHYHAC4JVbVta+23q90PAAC4pLXWPpXkU6vdDwAA2BxV1bar3QcAAJhilvfQWnvxavcFMOIlsAWo7mVV9eOq+k1V/byqPl1V30jyR6PYu2Yj/sxPCzPen5zkraOuu41RMn9VVT+tqndW1dXHvm2r6jOj/nOr6tSq+lhVXX+uL7MRhJ5XVcePMs+rqj+oqu+O96+/xC8SAACXKlX1mhHPnlNVv66qw2bTxoypZ/5yFH3hbDqaRSMDHT+bamapKWuq6t5V9cURF59eVZ+Y27dszAwAAMuZu3f6tKr6XlWdUVXvq6rLzZW5X1UdPmLQH46494pjxPbjl6jr9mN9WlVdpqquVlXnV9WJo9z1x/5f1IK/rqpvVNVZVXVcVb2kqrYb5Ze9d7zoXO40+v/rqtrr4r52AABs0f6kqr49H/9W1RVG7sB5VXW9JBnbTxvx7PXmjt+uqt494tdvVdU9ZjtqYUrxF1TVN5Ocs2j7nuP9darqoFHHF5LsdMmdPmy9JF4CW4J7JHl+kvOSvCPJ55PcOslbkvxklPlM+lDah80dd8Mkj0/y4STfqKpbJfmfJLunj/jz9SR/leRDVVXp/028dpJPJ3lbkh8kue94vdhzk/xvkqskeUWSfx9tXz7J06vqT1bgvAEA2HrtlOTL6fHvwUnumB63Xjl9yvBvj3JfzsI04vvNHf+uLDPVzPjh+BNJ7poe0/5HkjVj34ZiZgAA2JAXJflSkssmeWSSRydJVd0ryUfTY90D02PV5yR5Y5LT02PYmf3G8v0k30qyfZJbJblLkkpyjaraOT2mTZLPt9Zakien3ze+fpJ/S5/57QW5cKycLLp3PL+jqnZL8l+j//dvrX1mk68EAABbg5en36e9IP5trZ2d5P3pOQiPGOX2TI9rP99am79v+5Ak10ryxSQ3T/KxqrrmojZelB63/scyfTggyV5JfpT+QNPfXrRTAqaQeAlsCWZTvRyX5INJnpbkukneNLYlyQGttWeNaRRnWpI9W2t/3Vr75/SbbpdL8s0kJyb5TpLfJLl7kpu21n6TZO8kRyc5Kws33P5oiR+Zn9tae0SSH6bf6Ht3a+0vk3xy7L/tRT9tAAC2Yo9PT4A8LcmxSX6dZIckt26tHZDk8FHuUyMOPqC19qy54188th+XdT1zrF/fWrt3a22fJLcZ29YbM6/Y2QEAcGn2pBFjfmi8n90rfcZYH5nkV+n3YZM+mvs5SS6YLnHEss9qrZ2S5HNj813SEy3XJjk3yd2ykHg5K/O0sX5ma+2xSe4/3j9+NurlrIlc+N7xzO+nP9R0+Ui6BABgmqcsE/++fawfNdb3G+sDFh1/dGvtXq21eyU5KskVkzx4UZmXtdYe1lp7yOLGx+iZs5lC79lae0z6w03AxWyb1e4AwAQHpSdZPjp9tJ8kOSILgclyTlz0Q/Oasb7jWObtXFU7jvovu2jfdulPnpw2t202wtCp6U9Hf3e8P2Osf28DfQMAgCWNab2/nuQ6S+zecQWamE0zc8Fo8a21346Xa8Z6yZg5PRETAADW58ixPnWsrzTWa8Z6r7HMVJIbJTlzmfoOSX9A6C6jjoPTRwK6a5LbzZWZb2N2/3YWv14mfRTMmcX3jmeuMtZfSZ95CQAANmTJ+Le19tWqOirJbapq1/TZNs/NQoLmzHcWvb5NkustKnPoetq/7lif3Vr78Xj9vendBzaVES+BLcFl059U/v30H3vfk2SP9FGAzhtllvrv2W8WvV871q9trdVsSXLj1trHkzxotPWJ9MTJ+R+aF494ed4G3gMAwKb6g/Sky5+nTzFz+SzctJvFpcvFwecvs33e8WN9QbxbVbMHM9eO9XIxMwAAbMjvxrot2r52rJ+5RKx5TObusVbVfDw7G83yD5PcPv1H50OT/EmS3ZKcnOSYRW3cbKxno7afn2T2I3Sy7r3jmZ+kjzx/+yQHVNXih/QBAGCx5eLfJHnHWL86yQ3SZzD61aIyN1vi9QmLyiwXvyY9hk2SK1TV7GGjm6ynPLBCJF4CW4K7pP84/P+SPCcL08ecmoWbZc+sqtdV1W7rqeetSX6b5BlVdWBVva2qvpiF6cpPHOs7JfmXrDvENwAAXBJmcemOSf45faSdKy0qM4uDH1VV+1XV3Rdtf8OIj5caif31Y/3Mqvp4Vb0jydfGtg3FzAAAsKlm0x2+sqreX1XvrKoj0hMdkx4HnzteH1BVr0yS1tqJ6SP/3DB9dqJZ4uWa9AfpP99am/3IPWtjvxHnfnS8f0dr7ZwJffxd+gP630jywCT/utFnCQAAC96X5JwsjPi+VA7CblX16ar6dPpol79O8uGpDbTWTsjCaO0HVdV70ge2Ai5mEi+BLcFPkhyb5B5JnpDkiknenP6j8GvSp2G8RZJnJtlluUpaa0enPwX9+fSnox+W5MpJXj6K/EuSjyS5wtj/0pU/FQAAWL/W2v+mx6KnJ7lnkvdn4anlmbcl+VL6NDLPSLL72P636U9D/2l6fHyFJeo/KMl9xvF3S/KQjITNCTEzAABsktbaJ5PsneToJPdOT2w8P8l+Y/+56fHsL5M8NMlT5w6fjXp5cpLv5sJTLX5u7vWbkjwlPX5++Kj/5emx8dR+njb695MkT6iql009FgAA5rXWTs1CEuWZST62RLEPpc9+dLf0B472bq39fCObemSS/05/WOkm6Q/0AxezWngIEAAAAAAAAAAAgJVQVQ9N8oEk722tPWa1+wOsnG1WuwMAAAAAAAAAAACXFlW1fZLHJ3n02PSvq9gd4GJgxEsAAAAAAAAAAIAVUlVrkhyf5NQkr2ytvWJVOwSsOImXAAAAAAAAAAAAABNdZrU7AAAAAAAAAAAAALClkHgJXKKqam1Vtap6wCr3Y8/Rj7XrKbP/KLPvRtS7bVUdV1XHV9U2E8q/ZLSx53rKrBllDFEMALAZE+uuU16sCwBwKSDOXae8OBcA4FJCrLtOebEubASJl7AZmfujfn5VnTnef7Cq7riR9Rwy6tnnYujbnitV5zLtXLeqPllVp0z9Y31J9W2ixya5cZJ/aa39bkL5f0nyuyQvXU+Z05PsN5ZNNgKgj47v1mnju3WtDRzzrrnru+w1rqq7VdV5o8xHLko/AYBLJ7GuWHcZqxnr3qeqvjyOObGqXl9V283V15ZZ9r0ofQUALl3EuUlV3bOq/ruqfl5V51TVsVX1d1VVq923iS5tca57ugDAihDrinWXsVKx7qS4ddEx642Pq+rhVfWVqjp31Ln/RekjbMgGs5mBVfGJJL9MctckD0myd1U9orX2odXt1iVihyS7JDkiyV6r3JdN8eQkLcm/TSncWjuxqg5OsldV3aq1dswSZU5J8qyL0qmqukz69+oWSQ5Kcvn079b1k9x5PYfeOck3klw7yeWWqfvKSd6T5PxI6AcANkysK9adL7MqsW5V3TnJR9NvIn4gyc2TPD3JtunnObt5eMEhSZ6a5LJJjrso/QUALrW25jj3Lkl2S3Jwery0d5KXJzkr/Yfbzd2lJs4d3NMFAFaaWFesO1/mIse6wwbj1nkT4+Nd0+/5Hpd+zxcuVv5nCjZP72itPTbJLdN/BNwmyZur6opJUlU3qKoPVNVPqurUqjqoqm419h2S5I9GPe+aH5FlPMF6SFX9qqp+WlXvrKqrzxqtqptX1YFj39lVdVRV3bD6cNY3HMUOnn8aparuV1WHV9XpVfXDqnrNrJ9j/1Oq6sdV9cuq+psNnXhr7ejW2i5JnjflQi3Xt6rataoOG+f626r6WVW9oarW+YNdVX8z+veTqnruBtp7bFUdPZ6gOLaq/r7GkNxVdd30oOu41tpP5o55VlV9v6p+U1Unjc/gpnPVfm6s/3yZNtcZqnvuqY+nVdX3quqMqnrfUuc33C89APlGa+1eSe6R5IdJ7rS+J0daazdrrd03ydnruSyvT3LFJG9dou97VdVXq+qs8cTJ16rqgeupCwC49BPrinXn21ytWPeB6TdK399a2yfJvcb2x1XVtVprp7TWnjVbkvz3KP/zJB8c/bxdVX1hfD/OrKpjqurJy7QHAFz6bbVxbpIPJbl+a+0vWmsPSk/oS5Z52Eic654uALDFEeuKdefbXIlYd2rcOm+D8XFr7fmttTunJ2Yu1Xf3dFlREi9hMzaGen7ReHu1JKF8WvMAACAASURBVHcdQcFnk/xFkq8n+ViSPZN8tqp2SPLvSWZ/ND+TPkrLYSOw+Z8kuyf51Dj2r5J8qLprJflCkgek/5j4vvRRXa6a5J1Jzhh1fnjU+a2qulf6KDE7JTkwyQlJnpPkjUky/ri9Mcl10v+wPSr9aYOVtGTfkuyY5Nyx7Z1JzksfoeY5i46/fpLHpF+TayR5dVXdd6mGquqJSd6Rfk0+mB4AvDTJC0aR3cb623PH7JzktUm2T/Ku9Otwg/SnNrKo/G2nnfKFvCjJl9J/BH5kkkcvU25W91eTpLV2XpIjx7bbbEK7SZKq2jvJPkkel/6U02LvSr8uHx7L+UlutantAQCXHmLdScS6F1+se85Y37Sqtk9y+/F+2/Sbd4vNnuB+U2vt3PH69Unuln7e70/yq/TvIACwFdsa49zW2jdba+fMbZr9uHrCMoeIc93TBQC2QGLdJGLdDZka626KlYiP3dNlRZlqHDZ/P5x7fY0k90ly4/Tg5Ltj+4/Gtge31t5QVQ9Oct0kB7TW9k+SqnpjehBwZJITx7JnkrsnuWn60wpXH/v3aK2dP47bprV2VFU9NsmVk7yhtXbI2PeJ0f6R6X+Qjk4favsvq+qp6YFKkuzfWntcVV0tPShasaTv1tqLl+rb6N9v04c73zH9Wl03yR8necVcFecnuXtr7aSqOin9B9XHJPnPJZp7xlgfnj714NeT3Dp9eO4XpQc0yUIglfQfbpPkp0n+I8m3WmsnVNVl58qcPtZXzcZ7UmvtQ1VVo9/LBT/XHOsz57adNdbX2oR2M4LdtyZ5c2vtE1V1+yWKbZv+o/bH0ocJPzY9IAYASMS66yXWvVhj3bcleVL6FDSnLdp3oWOq6tbp1/acJG+e2zU7/0+mX7fvpl9zAICtNs4d5/GwJCfnwrHpBcS57ukCAFs0sa5Yd32mxrqbYiXiY/d0WVESL2Hzd8O517/IQqb+dZM8c1HZnddTz5qxvuNYFh+303j9lVnQklzw1MqG6twrFx5Ku5LcaPQxGQFWa+2Uqjo5m3hTaGNU1fOTvGyJXTsuev/L1tpJ4/V3xvp6y1S7ZqwftGj7NavqSklOHe+vPNvRWvt2Vb0wPej59Ojbd5M8OMkxo9j2Yz07fmPMnuCYHXulZcqduMT+2eufb0K7SZ+OcYf0UYI+nuQmY/udquodrbXHJXlikv8vfQj2pAehT0sfgh4AQKy7CcS669joWLe19qOqulmSh6c/zX1Eetx646w76s9stMsDWmvz+56T5E1J3p7+vTgzyT+lPzEOAGzdtso4t6oel+Qt6fcA92qt/WhDxyw6Xpx7Ye7pAgCbI7GuWHd9psa6m2Il4mP3dFlRphqHzVhVbZPkhePtKUkOTbJ2vP9qksu01qq1NhtS+6Vj33ljPf9vfHbca2fHjONu3Fr7eJLjx/7bV9UFx40+bKjOZy5R5zFZGDL8pqOuq6U/lbLSlurbQ8f6H9KTzP92vF/8ZO6OY4jzJLnZWC83LPjasb7/ovO9UWvtzPQnSJLk5rMDxpMhL22t7ZAehL4y/Xo8e67eWfkjs/FmgWXbQLmjxvr2Y2j2yya53dh29OjrtavqZlV1jYltz67l3dOfZNplvL9mknuM1//VWtsl/Wbeg9M//5cGANjqiXUnE+teDLHueOL6tNbaG1prL0i/EXjj9CekD5s7xx2TPGK8fd2ido9ore2W/v3cM/1p6VfMfa8AgK3Q1hrnjh+S357kx0nu2lo7agOHiHPd0wUAtjBiXbHuBFNj3Q1aItbdYHw8gXu6rChfHNg8Pa6q7pc+zPRN0v84Pam19uuq+mR6kLF7kkOr6utJbpD+R+HeSQ5J/4OfJM+sql2TvCt9+pAnJHlGVe2U5KT0P5h3Sf+D/74kf5c+1PPhVfXV0cbj0/+A/Tj9KZAXj769JskbR5uvrKo7Jzk7ya7pwclOSQ5I8rgk+1TVdklulQ38d2cEEa9OcrW5bfsnSWttn2UOW6pvs6cdHpn+RMwDljn2MkkOrqqj0ocFT5L3LlP2DelPP7y3qg4cx+6R/iTPnq21H4/P49ZVdd3W2k+SXD/Jl6vq86PcXUdd80+H/NFYfyIXn4+mPxFzy/QnVy4/+nZ4a+3gUeblSf4yyX4Zo/pU1avTb7BdcZT5u6raJ8krxjDw+88aqKp90wPtj7bWZtf7yKpamz6c/PXHtk15MgYAuPQQ64p1V9qmxLq/l+Q7VfXZ9M9t71Fu39ba/NQ7T0qyXZL/aa19Y1G7/zlu7n0/yVVGuydn4cYqALB12Zrj3CdkYfSew5M8pT/nklNaay9e5jBx7oa5pwsAbC7Eup1YdwVtIG79TtaNdTcYH1fVA9Kv7R1GnXcb9+C/2Fp7e9zTZaW11iwWy2aypD+R0JKcnz7Sytok/5bkDovKrUkPCk5IDxa+nx6YXHvsv3V6Rv9vR30PHtv/MMln0/9wnDHKvHSu3psnOTDJz0a9RyW54di3Z5Jj0//gtCR7jO0PSB8R5rT0P8aHJ3nWXJ1PH/08Jck/zp3jA5a5BmvG/nWW9Vy3dfqW5Bbp0wWek+Tzo+2W5Ki5Y9roz9+kTyf40yTPm6t3/1Fm3/G+0gOxI9OHnD4pyeeSPGrumCeOY54z3l8tyX+Ous9ND17en+SqY/81x+d06HrO74JrMrdtdl3WjPevG+/3X089O42+nDk+/39Pcp0lzvd1S3wnFy97LlH/vmPfR+a2vT79+3n2+I4cnOS2q/1vzWKxWCwWyyW/RKx7obhu8bKe67ZO3yLWXaqejYp102+ofX58rr9J8o0kj1tU57bj3FqSP1+izb9P8u307/OZ4/txj9X+t2axWCwWi+WSXSLOTRbuCy5e1q7nuq3Tt4hzl6rHPV2LxWKxWCyrtkSsOx8viXUv/HmvRKy7NuuJW7N0rLuh+Hi5z2v/sd89XcuKLtVaCwAro6q2Tf9Dfdkku7TWfreB8i9J8oIkf9wWnlIGAIDNjlgXAIBLI3EuAACXVmJduHhJvAQAAAAAAAAAAACY6DKr3QEAAAAAAAAAAACALYXESwAAAAAAAAAAAICJJF4CAAAAAAAAAAAATCTxEgAAAAAAAAAAAGCibVa7A1ubHXbYoa1Zs2a1uwEAm6W1a9fmpJNOqtXuB7BpxLoAsDyxLmzZxLoAsDyxLmy5xLkAsLwNxbkSLy9ha9asyRFHHLHa3QCAzdIee+yx2l0ALgKxLgAsT6wLWzaxLgAsT6wLWy5xLgAsb0NxrqnGAQAAAAAAAAAAACaSeAkAAAAAAAAAAAAwkcRLAAAAAAAAAAAAgIkkXgIAAAAAAAAAAABMJPESAAAAAAAAAAAAYCKJlwAAAAAAAAAAAAATSbwEAAAAAAAAAAAAmEjiJQAAAAAAAAAAAMBEEi8BAAAAAAAAAAAAJpJ4CQAAAAAAAAAAADCRxEsAAAAAAAAAAACAiSReAgAAAAAAAAAAAEwk8RIAAAAAAAAAAABgIomXAAAAAAAAAAAAABNJvAQAAAAAAAAAAACYSOIlAAAAAAAAAAAAwEQSLwEAAAAAAAAAAAAmkngJAAAAAAAAAAAAMJHESwAAAAAAAAAAAICJJF4CAAAAAAAAAAAATCTxEgAAAAAAAAAAAGAiiZcAAAAAAAAAAAAAE0m8BAAAAAAAAAAAAJhI4iUAAAAAAAAAAADARBIvAQAAAAAAAAAAACaSeAkAAAAAAAAAAAAwkcRLAAAAAAAAAAAAgIkkXgIAAAAAAAAAAABMJPESAAAAAAAAAAAAYCKJlwAAAAAAAAAAAAATSbwEAAAAAAAAAAAAmEjiJQAAAAAAAAAAAMBEEi8BAAAAAAAAAAAAJpJ4CQAAAAAAAAAAADCRxEsAAAAAAAAAAACAiSReAgAAAAAAAAAAAEwk8RIAAAAAAAAAAABgIomXAAAAAAAAAAAAABNJvAQAAAAAAAAAAACYSOIlAAAAAAAAAAAAwEQSLwEAAAAAAAD+f/buPD6K+v4f+Gtmj2Q3yebghoRwlUNuAwRFETnqgdYDrBYEEYuoVUGLilUUe3hLrVb6bdWfil8VKYj1qPr1QBBRIQYqAcIdEkhCTnJt9pidz+8PyJYoAib7mcnOvp6PhxImm/28dxhmX7znM58lIiIiIiI6TZx4SURERERERERERERERERERERERER0mjjxkoiIiIiIiIiIiIiIiIiIiIiIiIjoNHHiJRERERERERERERERERERERERERHRaeLESyIiIiIiIiIiIiIiIiIiIiIiIiKi08SJl0REREREREREREREREREREREREREp4kTL4mIiIiIiIiIiIiIiIiIiIiIiIiIThMnXhIRERERERERERERERERERERERERnSZOvCQiIiIiIiIiIiIiIiIiIiIiIiIiOk2ceElEREREREREREREREREREREREREdJrsZhdA0S8UCqGqqgq6rptdChFRTElLS4PD4TC7DCIiS2PWJSIyB7MuEZF8zLpEROZg1iUikos5l4jIHLGYcznxklqtsrISTz31FCZOnGh2KZa0ceNGtGvXDr179za7FMsRQuCtt97CpZdeCqfTaXY5llNdXY1vvvkGF154odmlWNLGjRtxySWXYOjQoWaXQkRkaZe/cRcO1W5D91SX2aVYzpy8q9EplABHnBPxLu7fSPuzkot9jUkQcV2gKIrZ5VhKz/oidPClIMWrIi0tzexyLMdeUQ40FGPoggnMukREkrGvKxf7uvKwrysX+7pysa9LRCQfc65czLnyMOfKxZwrV6zmXE68pFbTdR0dO3bEpEmTzC7Fkmpra5Geno7s7GyzS7EcIQS+/PJLjB8/Hi5e7I+44uJiFBcX89wgSVVVFTRNM7sMIiLLq/YGoasOpKamml2K5TiDbqhwIjEpEUlJHrPLsRy9oQEIxiMlJQWqqppdjrV48yEUN+LiknlukMB3+DAcIY1Zl4jIAOzrysW+rjzs68rFvq5c7OsSEcnHnCsXc648zLlyMefKFas5lxMvqdXmfPIYShN3Iu/DvB98LxQKwWazmVCVfL9cfwE66UlIz8yQOs6AihTE7Q+ibMt33/uOgKaFoCiAzWZDMBhESAs1Wy3I7/fB6/UiLi4OdrsjfFdEKBSCz9eIhIQEAM1XvwkGAwhpIQCAzW6Dw3H0Z4QQ0LTgsWWBjVsx58GaNSjwe+Dp2F/K8xcE+mP7y7k/uBit6zoURYn61YHSDm5Fe38KzuzUx/CxAwE/bGW9sPqp3OO2CoR0HTb16HkhpIfCXx+voaEBmqYhOdkDQDl2zPrgcNihC4H4uPgTjimEgBbS4LCfePnqxkYv7HYH/H4/3G53+M9d13Xoug673X6sSoH6unokJiVCOe54DwaDqKurgyfZA/1QMVKcDbjgiekt2DtERBQtOvinQpSV4aWbrmq2XQiB+vp6JCQkcFJbC63+9BVUB4PIPHcwemcPafa9UCiEuro6KIqCpKQkVFRUoLa2Fn36/DfTFBUVYfv27cjIyEBaWho6d+4MAKivr8e+ffswePDgH2S5srIy1NbWAgA8Hg86duwIANA0DdXV1Wjfvn3U578mV751I3w+Hy644qtmTTohBBobG2G323nXdAuNXPkXCF3HtcVn44r5vwhv13UdjY2NcLvdAACv1wu3293smBJCIC8vD0eOHMGYMWOgqirq6upQUFCAdu3aIRgMIjMz84TjBoNB1NbWIi0t7YTH6a5du5CamopDhw6hX79+4T/3xsZG+P1+pKSkADj692vz5s0YPnx4s3+vl5eXIycnB2effTaSk5Nbv6Na6MCMp1FWVQZggmk1EBHFqiuW340joQL0aJdg2b6uUT1dgH1d9nVbzsyeLmDtvm5CbS1S4xvZ0yUisrhYnb9glKm5k2DPKY/ZnCvTgzVrsFfpjpkWzblmSy36Du0aO1sy53qSPbDbzJ0C2LgzhMJ1ucjKyjK1DqPxCiG1WrVXQ1A0P5SEECg9XIpt27YhGAyaVJlc9oALSsicE1copGH//v0oKipEUVERKisqUV9fj4rKCgAi/N/Bg4cghEBVVRXq6urC2wMBP0pKSo89mzjuVxF+noqKCtTXN4S3h0IaKiurjH6pCDnqoKt+Q8esra3Fjh07UFVl/OuNNF2phy6M3X8nE9Q0FOwvgIBAKBTC/n37IYRo9piQHsLBg0XNwqTf70NpaSlqampRXVX9488fDJz0z628vAINDQ0oLj7U7Nzk8zWiprYm/Huh6zh48CCE3ry2kpISBLUgFCjQvV6ETlILERFZVzAYxLJlyzBlyhRUVFSYXY7l1NTU4L777sNjjz2Gp556Cu+88w62bNmCd955B0IICCGg6zqefvppaJqGDz/8EJs2bQp/79ChQ3jxxRcBIJwzmr7X9Dxvv/02/vOf/4S319bW4r333vtBLrEaIQS++eYbTJ8+HR999JHZ5VhOdXU1Fi1aBF3XUV9fj3vvvReapoWPMyEEvF4vlixZgvj4o404IQSKiorw0ksvYcOGDfj444/Dj236ftN/5eXl+PDDD5ttP/7rt956C3l5eXjuuedQWVkZ3r5//358+eWX4cf6/X4sWbIEgUCg2fM///zzqKqq4sUHIqIYVtUQgNcfsnRf18yeLsC+rmxW6eu2tZ4uYJ2+rmhsZE+XiCgGxOr8BaM4gglQ9eaTyGIp58oUstcB9sAPtlsl55pNqPUQavP9a5Wcq7SBycdqIAClts7sMgzHFS+p1U60ClAgEMCuXbvwxBNP4NEZj6JLly4mVijH6k9fQb0Ahs+9QOo4X6xahfT09PAqQEIIPPfcc4jrHYfZs2dDURT4fD588cUXWLnybXRGZwwfPhyDBw/GvBcfwZw5c+D1enH48GGEakK45JJL0LFjRyy570lkd8yGx+PB9ddfj9zcXLz33nvw+Xzo0qVL+GJhY1UjrrzySgwZMgRfffABBl0x0dBVna5860YAwIVXfh3x5xZCYPHiD7Fw1uXh1WCEENi1axc++mgnOnVqwNVXXxLxcY00cuVfAAB/mjrD8LGLi4uxYsU3zVYBKi8vx29/+xxuu/V51NfX463b/oybb/oHVqxYgYKCAnTt2hXdunXDW/98Gr+/8vfo0aMT3njjDQDAEccRnDviXKxduxaHqjwYM2YMfv7zn2PVqlXYtm0bUlNTcdWMq/Dtt2UYM6Y7Xn75ZaSlpeHaa6/Fe++9h82bN2N/5X7Mvmw21r36f4hzD0VJSQl+85vfwGbrhPz8fGRl9cLzzz+PQCCAb8q+wc1PvIIVK1agsbERkydPxtO//jMuvvhiXHfb7Si78VnD9ykREbUNQghkZWXhs88+QygUMrscSxFC4NVXX0Xv3r1/kHV37NiBBx54IJx1v/jiC/Tv3x82mw1fffUV1q9fH866hw4dwpNPPvmjWVcIgfXr1+Pjjz8OZ12PJzY+7jw1NRXnn38+vF6v2aVYjq7rqKiogKZpCAQCqKiogN/vx6uvvtos627btg2VlZXYtWtXOOs2nUv+85//4P777z9x1r3qKiQmJqKysvLEWXf/fowaNQqapmHlypXhrJucnIz4+HgcOXIknHXr6+vh8/mwbNmycNb96KOPcPHFF3PiJRFRDOusXQ0hBB44x2PZvq5RPV2AfV32dVvOzJ4uYO2+7s8PboWNn1pBRGR5sTp/wSgrPnwBtaoSztSxlnNlOtGnGFkp55ptxIo/IxAM4uHpM8PbrJJzr7vtdtM/nn7Thb87VsOdptZhNGucfajNcTqdOOOMM3jBRpKtW7di/Pjx+PLLL/GHP/wBq1evBnD0I+Suv/56rFq1CgkJCcjIyMDYsWOhqioURcHMmTPx//7f/wt/dONVV12Fffv2YcOGDXjppZcwe/ZsJCUlhVc8sdvtmD59Ol588UU0NDTgX//6F3RdN/nVy6UoCvr164fExESzS7GsvLw8zJ49GzfffDPKy8uRm5uLiooKTJ48GXv37sUZZ5yBzMxMnHnmmXj++edxxRVXIDMzM3wxOhAI4Prrr8drr72GHTt2IDc3F9deey22b9+OYDCI9957D2vWrIHT6cTPf/5zlJaW4rPPPsPcuXPDd4kEAgF0794do0ePxvLly1FcXIzPP/8cb7/9NtLT0zFx4kQ0NjZi586d2L17N6688kp07twZPXr0wLhx4/ixnEREMY5ZVy5mXXmYdeVj1iUiominKAqzrkTMuvIw68pnhayrquavBEREROZgT1cu5lx5mHPls0LOZU/XPJx4SRSF0tLSUFBQgFGjRuGKK67AunXrAADDhw9HZmYm7HY7VFWF2+1Ghw4doCgKsrOz0b17d/j9foRCIfTt2xeZmZnIzMzEvn370NjYiIyMDIwePRqKokBVVYwePRrdu3dHY2Oj5QMLGWfAgAF49tln8dRTT6F9+/Zwu93IycnBu+++i/PPPx8ejwdutxtJSUk4fPgwevXqhezsbDgcR5esHzlyJLp37w4AsNls2L17N9544w2MHTsWdvvRhZwnTpwITdPw8MMPY8+ePUhOTka3bt0wdOhQAIDb7caoUaPQo0cPVFf/d+nv3bt3o2/fvhg8eDDat2+P/v37Y9CgQVi8eDHKysqQkJCADh068B9lREREEjHrUjRj1iUiIqKTYdalaGaFrNsWPoKRiIjIiphzKZpZIeeyp2seTrwkKYLBINavX4+SkhJs2LCBH2MXQYqiYNq0aXj22Wfx7rvv4quvvoLT6YSiKFAUJfyYE/0eQPjukW+//RarV6/G2rVrMXr0aLhcLqxatQorV678wc80/RoLhBDIy8vDjh07kJeXh6KiIrNLshyHw4Hk5GR4PB7YbDbU19cjPj4eycnJcLlcEEJAURQ4HA707NkTy5cvx+uvv45gMNjsWFQUBV6vF06nE/Hx8UhNTQ3fVVJSUoIBAwagqqoK7dq1w969e/Huu+9izZo1zY7tpudpkp2djTfffBPLly9HSUkJqqqq0LFjRzidTpSUlMTU3wUiIvpxzLryMOvKxawrH7MuERFFOyEEs64kzLpyMevKx6xLRETRjD1deZhz5WLOlY85l1rDbnYBZE1NSz3PmzcPdrsdQgizS7KUQYMG4dlnn0V+fj7S0tJw+eWXw2az4Wc/+xlUVcWdd96JlJQU/Pa3v0VSUhIuueQSuFwuuFwuLFiwAJmZmfjLX/6ChoYG3H///ejfvz8WLVqE7du34+abb0ZqaiqEEPB4PEhMTMSCBQvg9/uRkJAAVbX+fG1d1zFhwgQA4LEbYcnJybjzzjvDdzTddddd2LJlC8aMGYORI0fisccew9KlS3HnnXfCZrNh/vz5yM3NRVZWFlwuF9LS0hAMBmG327FgwQKUlJRgyJAhuOiii/DII4/gxhtvhMfjQUpKCoqKinDPPfdg8ODBWLRoEUpLS/HII4+gZ8+eaN++Pdq3bw+Px4OZM2eipKQEycnJuOCCC5CcnAyn04knn3wSqampcDgcmDFjBkaNGoXU1FR07tzZ7N1IREQmY9aVi1lXLmZdeZh1iYjIKph15WHWlYtZVx6rZN1ys3ckERGZhj1duZhz5WLOlccqOZfMw4mXJIXT6cR5551ndhmWpSgKMjIykJGR0Wx7+/btAQBDhgwBgPCyxJmZmeHHDBs2DMDR5Y6Pl56ejvT09BOOd8YZZ+CZZ57BhRdeaPkZ84qiYMiQIeF9SJHldDrD+9bhcGDo0KFQVRWvv/46iouLMW3aNKSmpqJdu3YAgHbt2mHSpEknfK5hw4YhNTUV69evx8qVKzFhwgSsXbsWF198Mbp06YKuXbuGHztw4EAMHDgw/Pum54+Pj4emaXj55Zcxbdo0xMXF/eDcdfz4xz8HERHFLmZduZh15WHWlYtZl4iIrEBRFGZdiZh15WHWlYtZl4iIoh17unIx58rDnCsXcy61lsLZ0MYaMWKEyMnJMbuMiLri2bXYs2cPZnSrNLsUQ3U/mAwAKEyvkTrO1q1bkZycjO7du0sd51R0Xf/BEsdG6JvxOgBgV9G0iD+3EAKffPIJxo0bB4fDEfHnbwv+t+tXAIBri88yfOza2lp89913OOecc075WF3XAaBFdyQ13aGmKEr4159ynDb9/E8d+6x/fwAA+Orii37Sz0VKXl4e5s2bh6ysLFPGl2XEiBHIycmx9r+QiCzMiln38/+5Gkg6BN1fZXYplvPHQF802Org0kKm35UsIKDAWm8/Cw7MRmc9ER3U2Pp3mhH+mHQE+/3JqKnWYbPxftZIq0lIhtvmw/9c2p9Zl4jaFCtm3dLSUtx+++0YMWIEAODt2h4AgMs9BeYVJZlRPV2AfV32dVvOzJ4uYO2+rtk9XYB9XSJqe6yYc2N1/oJRuh1IgqIoONi91tQ6zMq5MvXNeB2apmFn4a8smXPN9mrXDdBDIVx3+NxTPjbacm5bMOSfK5Ge3g2DVq82u5SIOlXO5RUCarV5jqXAqGLYRZ3ZpRjqAU8PNNjqkGqX+4YXPDeIUrUUe2x7pI7TVg3augCd9UScFS/n+PrViKsRF4gDglKe3nR7D56D/b5k/NsXb/jYQnRBsE8v/LvKafjYRlg29lYk2oN4b/ZEU8Z/++23TRmXiCjWxNnjodmcsDut+X5mpnqvG0HFB49Dhc1mM7scy3FoiVAQB2ecExabU2o63ekFQm7YbHFw8twQcUFnHLzxbCwTERllyJAhmD17NgBg1MrfQPGUwKabewFVJqN6ugD7uuzrtpyZPV3A2n1ds3u6APu6RERGiNX5C0YxMlPHmkFbF6C7nohz4+osmXPNtvfguabmbKtbduE9SHQE8LXZhRiMEy+PoyhKPwBvHrepF4AHACw7tr0HgAIAvxRCVCtHpyT/BcDFALwAZgkhco2suS1ouhithGLral69dvRCsew7KJpmv1vpTo2foumCsaI0SHj2oyv+KqqCU1+NblodOLr+HHSHF4rmhqq6jB9bzenTCgAAIABJREFUBxQFUNVT7LPo3LUIOOLQ4I4PL5FvtKSkJFPGJaLoxazbMhmNt6HswGGc+YfJLX4OIQSCwSAcDscJM13T9+12e9TdwdgarodWwx4M4o+XZiI7O/ukj236pIZYzcQtsfquV1Dh86H/QzPhcp08C3L//jRT3hoNXejYVTQN8+fPP+ljuW9/uis270Z5WbnZZRBRFGHObR2XyxXubcQ7XNBsDijCuu9bRvV0AfZ12ddtOTN7uoC1+7pm93QB9nWJ6Kdh1m2ZWJ2/YBQjM3WsCWdotR5WzLlm0x1e4HRyNndti/idTsBlvZu3ToUTL48jhNgJYBgAKIpiA3AIwGoACwF8KoR4VFGUhcd+fw+AiwD87Nh/2QD+duzXmHKii9FffPEFOnXqhL59+8Ln8+H999/H5Zdf/qMr2TQ0NOD3v/89/vjHP55wyWQhBB555BFMnz4dmZmZ0l7LT+F6aDVcAD548Aqp46xatQrp6enNLkbn5+ejtrYWo0aNwr59+1BcXIz4+Hh4vV6MHTtWaj1GW33XK6gHMPzB6yL+3EIILF68GAvvXhi+GC2EwPvvv4+zzz4baWlp+OijjzB06FB88sknuOCCC9ChQ4eI1yHTlLdGAwAuvNL4+wqKi4uxYsWKZhejGxoa8H//93+47LLLEAgE8P7772PcuHF49913MXPmzKiabHLF5t1ml0BE9JMw60bOT826Xq/3pFkXAJ588sk2lXXNFEtZ12hWy7ptjZWyLhFRNGHOjZxe2p2oOVADcbl1+7pG9XQB9nXZ1205M3u6gLX7uuzpElG0YdZtmVidv2AU+/0r4FRVfPD7qeFtsZRzZTrRzfRWyrlmu2LVKAQDQVz2q83hbVbJuW3BOR9tOOUiEFbEI+THTQCwVwhxAMBlAF45tv0VAJcf+/oyAMvEUV8DSFEUpYvxpbY9Xq8Xr7/+OoQQ2L59O7799luEQiFs2bIFeXl5OHz4MCoqKiCEQH19PWpra1FYWIi9e/dix44d0HUdfr8fOTk5yM/PR01NDUpKSlBSUoKcnBz4/X6zX6Kpdu7ciZycHABAQUEBvvzyS2RmZqJHjx7mFmYR//73v3HkyBEAwMcff4yKigpkZWUhISHB5Mqin9frxdtvvw0hBPx+P9566y24XC5kZWXxrigiImMx67YCs65czLpyMevKw6xLRNQmMOe2kq6HmHUlYtaVi1lXHmZdIqI2gVm3FdjTlYs5Vy7mXHmYc6m1uOLlj7sGwBvHvu4khCg59nUpgE7Hvu4GoOi4nzl4bFsJYtzo0aPx2muvoaGhAZ9++ikmTpyIf/7zn6isrERubi5GjRqFbdu24cknn8Tf/vY3DBs2DAcOHMDq1auxfft23H333VizZg3cbjc++OAD3HzzzfD5fHjttdcQHx+PrVu3YtasWTF9ovv222/xxhtvYNu2bUhMTMTWrVuxfft23HrrrWaXFvWCwSDeffdddOzYEbt3H70DdtmyZbj++uvRt29fk6uLfqWlpXjzzTfh8/lQX1+PhoYGPPvss1i6dCnsdr4tEREZhFm3FZh15WPWlYdZVy5mXSIi0zHntpLH48G+7fuYdSVi1pWHWVcuZl0iItMx67YCe7ryMefKw5wrF3MutQZXvDwBRVGcAH4B4J/f/54QQgAQP/H5blQUJUdRlJzy8vIIVdm2eTwe9OrVC5s2bcL+/fuRnZ2NwsJCZGRkoEuXLhg1ahTS0tKwceNG7Nq1CwMHDkRGRgbmz5+PcePGYfv27SgsLESvXr3QuXNn9OnTB3Fxcbj55ptxww03YMuWLWa/RNNpmga/349gMAjg6JttrN9JEylCCAQCAfj9foRCIQBAY2Nj+GtqnaY7wvx+P4QQEELA6/WaXRYRUcxg1m09Zl35mHXlYdaVi1mXiMg8kc65x54z5rKuzWZj1pWMWVceZl25mHWJiMzDnm7rsacrH3OuPMy5cjHnUmtwau6JXQQgVwhx+NjvDyuK0kUIUXJsKe6yY9sPAcg47ufSj21rRgjxDwD/AIARI0b85AZfNFIUBZMmTcKSJUswcuRIuN1u+Hw+bN68GVlZWRg8eDAaGhrw3HPPYdSoUUhKSoLNZoPNZoOiKNB1HYFAABs2bMDkyZORnp4ORVFgt9vDJ7pYl52djVmzZuGzzz7Dpk2bzC7HUpxOJ6ZMmYJevXohLy/P7HIsp2vXrpg5cybq6+uxfv16s8shIopFzLqtxKwrH7OuPMy6cjHrEhGZKqI5F4jNrAsw68rGrCsPs65czLpERKZiT7eV2NOVjzlXHuZcuZhzqTU48fLEfoX/LtMNAO8AuA7Ao8d+/ddx229VFGU5gGwANcct6R3zhg0bhi5duuCiiy4KBw1FUbBx40ZUV1dj2rRp6Nq1Ky666CLY7XYMGzYMiqIgIyMjvFyvqqr44IMPoGkaBg4ciISEBAghMHDgQDNfmuk6deoU3kft2rVD7969ARy9I51ab9CgQXC73QCAAQMGIDExEYqiQFW5SHBrOZ1ODB06NPwPkWHDhkFVVe5bIiJjMetGALOuPMy6cjHrysOsS0RkOubcCGHWlYdZVy5mXXmYdYmITMesGwHMufIw58rFnCsPcy61Fidefo+iKAkAJgGYe9zmRwGsUBTlBgAHAPzy2PZ/A7gYwB4AXgDXG1hqm+d2u/HMM89AURSEQiFUVFRg2LBhqK2thcPhgNvtxpIlS6AoCgBgwYIFUBQFEydOhNfrxbJly5CVlQVN02Cz2XDjjTeGHztnzhwzX5rpsrOzw18PGTIE6enpePjhh3HRRReZWJV13HTTTeFj7frrr8d3332HiooKdOrUyeTKop/H48H8+fOhKArcbjfuuOMOvPHGG+jRoweDNxGRAZh1I4dZVx5mXbmYdeVh1iUiMg9zbmQx68rDrCsXs648zLpEROZh1o0c5lx5mHPlYs6VhzmXWosTL79HCNEAoN33tlUCmHCCxwoAvzGotDYtGAxi+/btJ33MjBkzUFBQgA4dOqB3797YsWPHSR8/e/ZsHDx4EGeeeSYyMzORn58fyZJbTdd1ADjl626toqIiBINBJCUl/ehjGhsbcdZZZ6FDhw7S6zFaSA8BkLOfhRCoqKhAfn4+4uLifvRxVVVVmDZtGg4dOoTi4uKI1yGTzP13KmVlZSgtLT3p2LquIykpCRdeeOEpzwltjbchCMCcfQsAhw4dQp8+fUwZm4iiF7Nuy8Ri1jWCruvQdR379++P2awrU0gPQQjd0lnXLCE9BKELS2ddM3kbgvD7/QB+/LglIvo+5tyWq6ysDL+fub0NAPCD9y0rZV2jeroA+7rs67acmT1dwNp9XbN7ugD7ukT00zHrtgx7uvKcTqa2cs6ViT1dufSQDl3olsy5bYHf74fL5TK7DMNx4iVFRCAQwMaNG0/rsT6fD99+++1pP7ff70dFRUVLS5NG046eME73dbfUnj17UFVVBZ/Pd8rHbt68WWotZnBpR5tMMvazEAKHDh1CTk4OHA7HKR9/+PDhiNcgW1q8vP13KkeOHEFhYeFpjX3kyBEDKoqs2k5Hm2Mb9+wxZfx9+/bhvPPOM2VsIqJY8nT1f+ASSVBeO50ccPTu0txNp5tdOwMANn5V3rLiotwfur8HJBci1FCMw9+c/GM72gGoyjWmLqtY+rOfocFWh8RNK0/vB4rk1mMlvy2Yhy56Im4SZbC/9s1JHzsCAFBtRFmWsSRgR4WoAn51jtmlEBHFhJKSknDvJqu2KwDg2407T/hYK/R1jerpAuzrsq/bcmb2dAFr93XN7ukC7OsSERklFucvGEXXnRBCnNb+tWLOlcmlhaDrwrI512ypcSHoum7JnNsWNLo7IcXsIkzAiZfUak9X/wcuRxLiDvzM7FIM9Uj3F4DkQjhCVVLH6TEiCFVVY3YZ40UDMtFgq0ManJF/cgXwXejDKscqKFAi//xtwG3f3YnOeiJGuxoMH1uIdpjaYyKcB04dCqPRyO0FOKIcwZjHbjVl/Fi8W4SIyAwB1CFeOBHnlJBFYpxTtSGk2KA6HDGbdWWqb3AjqPjgiINls65ZHFoiFMTBbrfDyXNDxOk+ASUkzC6DiChmDBo0CLNmzQIALPjDi3A3eOC0cJ/XqJ4uwL4u+7otZ2ZPF7B2X9fsni7Avi4RkRFidf6CUR7vaVymjjVNGTrV4bBkzjXbbVt/iww9Eekm5WyrG1lfgWplNzB2uNmlGIoTL6nVmi5Gf58udKiKGv5aURToug6bao1GU9OFYrMIiPCbrYAAjl2XUhRrvQHXa0cvGBtJCBHej01f67oORVWiLuA0XRQG2kp4ED+6f1VVBaJo/+ohQBxbSp+IiKyrctgmbC87jE9+/Ul4WygUQlVVFdq3bw8hBCorK5GcnIzCwkL07t3bcnlMlqI7DiIYDKJ8xs+QnZ0d3u71eqFpGjweDxobGxEIBKBpGjRNQ6dOnUysOLq4HloNxefD6gcuD1/YE0KgqqoKHo8HDocDVVVVSExMxMGDB9G1a1fEx8ebXHV0WH3XK6gVOtZ2rMX8+fPD2090bvB4PDh48CB69erFc8NpWvPQQpSVleNsnGt2KUREMSeIOugiztJ9XbN7ugD7ujJZpa/b9nq6gFX6uuzpEhHFhlidv2CUH8vUsZJzZfqxDG2VnGu2E+dsa+TctiCkK9D12LuhnhMvqdVOdDG6qqoK9957L5YuXYrGxkbMnz8fjz/+OD755BNMnTr12AkquhXdcRAAkPHnq6WOs2rVKqSnpze7GP3++++jtLQUN9xwA9atW4fc3FyMHz8eXq8Xo0ePllqP0VwPrYYLwAcPXhHx5xZCYPHixVi4cGGzi9ELFizAbbfdhh49euD+++/Hr371K+zcuRPnnXce2rVrF/E6ZFp91yuoBzD8wesMH7u4uBgrV6xodjG6oqICixYtwl//+lc0NDTgt7/9LR599FGs/ewzTJkyJarODWseWmh2CUREZJKamhrcf//94ax777334vHHH0dubi4nV0XAmjVrwll306ZNzbIuJ1623sMPPxzOukuWLAln3eTkZE68bKXq6mo88MAD4az7u9/9Do8++ihyc3PRs2dPnhuIiKjNqx35H1RpGtzvui3b1zWqpwuwr8u+bsuZ2dMFrN3XZU+XiCg2xOr8BaPsu3U/FFVFz2emhbfFUs6V6cduprdKzjXbqgUvoTIQxPDHbwxvs0rObQve/M0NcLlcGGt2IQbjxEuSQgiBuro61NXVobGxEfX19bDZbKiuroYQsTfDOdI0TUNtbW14H/v9fqiqiiNHjphdmiV4vd7wvq2rq4MQAj6fD36/3+zSol7TuaG+vj78n91uR1VVFc8NREQUNZh15WLWlYtZVx5mXSIisgJmXbmYdeVi1pWHWZeIiKIdc65czLlyMefKw5xLrcWpuSTNzp07cfPNN2PevHkoKytDIBDAunXroPNjHCLijTfewNy5c7FkyRLouo5Dhw5h27ZtZpdlCT6fD/fddx/mzp2Lzz//HACwceNG1NTUmFuYRWzfvh033XQT5s+fj4qKCvj9fnzxxRcMLkREFFWYdeVi1pWHWVcuZl0iIrICZl25mHXlYdaVi1mXiIiiHXOuXMy58jDnysWcS63BFS9JmgEDBuD555+H1+vFrbfeanY5ljNjxgzMnTsXa9aswZYtW8wux1Li4+PxxBNPoGfPnli4kB89EmmDBg3C3//+dzQ0NOD22283uxwiIqIWYdaVi1lXHmZduZh1iYjICph15WLWlYdZVy5mXSIiinbMuXIx58rDnCsXcy61BidekhSKosDpdMLhcMDpdMLpdEJRFLPLsgxVVcP7NS4uDnY7/ypH0vHHLY/dyGvar8FgkPuXiIiiErOuXMy6cjHrysWsS0RE0U5RFDicDmZdSZh15WLWlYtZl4iIohl7unIx58rFnCsXcy61Bs92JIXH48GDDz4Im80Gt9uNhx56CLW1tUhKSoKq8hPuW2vs2LEIBoMAgKysLPTt2xdr1qxBhw4dTK7MGu6+++7wvrz99tsRHx+PQCCAxMREkyuLfqmpqXjggQegqioSEhKwePFi1NTUwOPx8NxARERRg1lXLmZduZh15WHWJSIiK7DZbMy6EjHrysWsKw+zLhERRTv2dOVizpWLOVce5lxqLU68pIjRdT38taqqyMjIgBACiqKgW7dueOmll3DllVdCUZRmj412sl+LEAJCiGbjJCUlhcdOSEhAfX099u/fj1mzZllq3x5PxusSQoR/Pf75u3btGh6zc+fO+OKLLzBw4EB06tQpavevGXWf6NhVVRXp6enNzg0vvvgipkyZYlqdLXb08DGt5qbjl4iIjBGrWdcIzLpyxULWNYuls66ZRPh/RERkkOPfoxRFiYmsa8TrYF/3KPZ1W87MvqNls67JPV2AfV0iIiOxpyuRQMznXJmsnnPNZsmc2ybEZs5VGPCNNWLECJGTk2N2GRE1/Z3p2L17Ny6qvcjsUgx1bVkvAMD/dtwndZwdO3bA4/GgW7duUsdpqz4M9AcAXOjMl/L8a9euxZgxYyy73Hn/qqMhLD+t2PCx6+vrsW3bNmRnZxs+thHcB3YCALyZ/UwZPz8/H3fffTeysrJMGV+WESNGICcnh+u3E0UpK2bdqx9fhNKGTgjWucwuxXIGujR08KcAtjTeOSrBxB7/CyQXItRgfA60uj8F+6HBVoe4QBA2m83sciwnTVQjwwfMGPsisy4RtSlWzLqlpaW45ZZbMHjwYADAui7rAABjS8aaWZZURvV0AfZ12ddtOTN7uoC1+7pm93QB9nWJqO2xYs6N1fkLRvlVSQ8oioLXO+83uxTL+TDQH1pIw4WOfEvmXLP1q+wCXQ9hd4cys0uxpvzNyMjojl8/+VezK4moU+Vc/k2lVtPye8HVcBbWBVLNLsVQxWn16OBPgUuZJHWc/n3HQVVU2JTYvKD3WI8XgeRCOEJVUp5/bHcf4uLeh6JYsx+wqC4TDbY6pDocho8tdIFg3yC+ifvG8LGNkNjlMDIDNvxxzkumjL9q1SpTxiUiijVxTh12v4AaF292KZajqKWA4oLT6eTkNQmcqg0hxQZ7XJxls65Z6hvdCCo+JNgFnHFOs8uxnDi/hkQbbxImIjJKdnY2br/9dgBA/rMCh72dsC6QYnJV8hjV0wXY12Vft+XM7OkC1u7rmt3TBdjXJSIyQqzOXzBKcQfjMnWsacrQdq3SkjnXbGbnbKtL6FKKOv8hs8swHCdeUqs1XYwWweM2nuoaiQXeIxS1HlBc0t/wFCiAgph9Y226YCyTlfdtvXb0orBiwl86oRw9EZgxthGcShBuRYPLZc4KaA4GQiIiQ9w8eifKDq/DZZd9Ed72Y58a0PRRFFbOFpE0cuU1CAaD+Huvu5utpNK0fxVFabavhRBcGfMnKLrjEHw+H9KX/LJZXjl+/1LLuB5ajXgh8IuUQsyfOz+8neeGCHlpMspqylBkdh1ERDHCbreHs0KcU4ctoEP4T/IDUf52ZlRPF2Bfl33dljOzpwtYu69rdk8XYF+XiMgIsTp/wShGZupY05ShuW/lMDtnW50TGtyKZnYZhuPES2q1E12Mrq+vx+uvv45f//rXCAQCePnllzF16lSsWLECc+fOtcSKNiNXXgMA2DR1udRxVq1ahfT09GYXo3Nzc3HkyBGMHz8e27dvR0FBAVJTU9HQ0ICJEydKrcdoRXccBABk/PnqiD+3EAKLFy/GwoULmzVaSktL8emnn2LatGlRH2pcD62GC8AHD15h+NjFxcVYsWJFs4vRdXV1WL58OW644Qb4/X4sW7YMV155JVauXIm5c+dG12SKlyYDXOCIiCgmNTQ0WD7rmmnz5s3hrLtjxw5LZ10zHD582DJZt62pr68/adbl/iYiorZu3th9CIV2Y8vmCZbNukb1dAH2ddnXbTkze7qAxfu67OkSEcWEWJ2/YJRhb0yBqqjIveaf4W2xlHNlKrrj4AlvprdKzjVb/OK3oAYC+ODha8LbLJNz24Cyx0eaeoOTWXiEkBR+vx/r16+HrusIBoNYt24dXC4XxowZwzeCCCgqKkJ+fj6Ao2+yW7duRZ8+fdCnTx+TK7OGmpoafPON9T5GpS3w+XxYv349hBAIBAJYt24dEhIScPbZZ5tdGhER0Wlj1pWLWVcuZl15mHWJiMgKdF1n1pWIWVcuZl15mHWJiCjasacrF3OuXMy58jDnUmtxxUuSprCwEEuWLEEwGER1dTUaGxuxZMkSvPDCC5wVHgGffvopvF4v9uzZgx49emDLli3Ytm0b5s+ff+ofJjJRQUEBnnrqKQQCAdTU1KChoQF//vOfeW4gIqKowqwrF7MuRStmXSIisgJmXbmYdSlaMesSEVG0Y86VizmXohVzLrUGJ16SNImJiRg6dCj8fj82bdoEIQQ0TTO7LMtIT0/H0KFDIYRAKBSCrusIhUJml0V0SklJSRg6dCh8Ph9yc3N5biAioqjErCsXsy5FK2ZdIiKyAmZduZh1KVox6xIRUbRjzpWLOZeiFXMutQan5pI0aWlpmDBhAs4//3y43W6zy7Gcfv36YdKkScjKyuLy5xFUV1eHyspKOJ1Os0uxrHbt2mHixIkYN24cXC6X2eUQERG1CLOuXMy6cjDrysesS0REVsCsKxezrhzMuvIx6xIRUbRjzpWLOVcO5lz5mHOpNbjiJUkRHx+P888/H6qqwuFwYMKECVBVFXY7D7lI6NGjB1JSUgAAXbt2xbBhwyCEgMPhMLmy6FdYWIiPP/4YM2bMMLsUS2o6NyiKAqfTiQkTJkBRFJ4biIgoqjDrysWsKw+zrlzMukREZAWqqjLrSsSsKw+zrlzMukREFO3Y05WLOVce5ly5mHOptXikkBRutxuzZs2CoiiIj4/HrFmz8MILL6Bv3748QUXAkCFDwl/369cPaWlpWLx4MaZPn25iVdZwxhln4IEHHgAA3okjQWJiIq677rrwuWHmzJn4xz/+gf79+8Nms5ldHhER0Wlh1pWLWVceZl25mHWJiMgKbDaVWVciZl15mHXlYtYlIqJox56uXMy58jDnysWcS63FdxCKCJ/fhzVr1pz0MampqcjIyMDnn39uTFGSaZoGAKd83a2Vl5eHsrIyeL3eH31MMBjE2LFj4fOd+s8h2vSQvJ8LCgqwbt06yy7NbdRxeiKVlZXYs2fPKcdu164devbsGXXnhmFHqgEAW0z6O7djxw706dPHlLGJiGJNLGZdI2iaBj0UQm5ubsxmXZl6aBp0Xbd01jWLpmkQQlg665pp2JHqk54TiIgosgoLC8PvZ7o42uv4/vuWlbKukb0y9nXZ120pM3u6gLX7umb3dAH2dYmIjMKerjx6KASh6Cfdv1bOuTKxpyuXdmz/WjHntgU9vd6Y/Kh2TrykVnO9ezmGaQlIch446eP6AQCsc/FkVMJZ2O9LxgPfFkodR9PSodYqUPedzjgHpdZihv4eHzr4U+D4VM7dG107X4sNX1h3ifM/ZfwbSC6EUnjY8LHbC4HLh4WgFn5+0sd1BgCfERVF1ted7QjVJUAx6aJwIBAwZVwiolgTq1nXCE15+n/r1JjNujKFc/QXcWaXYjlNGVurP2TZrGumrzvboblS0NXsQoiIYoSmaeGJgV2/nA63nogkR/Psa6Wsa1RPF2Bfl33dljOzpwtYu69rdk8XYF+XiMgI7OnKdZb7XOz3J+OBLbGZc2ViT1euhzM+OK2cHY05ty3Y0c8BvU7HZLMLMRgnXlKrBTQPHMIBuz22Qonu8ELR3HA45M7YFhBQFRV2e2wuY6yo9YDigsMhp4kWCoVgt9stuyy3U7UhpNig2o1vQgohoOsCdhPGNoJmtyPgcGPKZHOiQ319vSnjEhHFmljNukbQHV5Ac8NmS4jZrCtTU462ctY1S1PG1lXVslnXTJrdDp8z3uwyiIhiRq9evTD5WG9j07p3EBJOS7+/GdXTBdjXZV+35czs6QLW7uua3dMF2NclIjICe7py6U4vEDImU8ca9nTlMjtnW51ms8PviL2+LideUqvtT+mIsrLDuO3B6eFtxcXFSExMhMfjQSgUQkFBAXr27AlVVU2sNLKmvDUaAHDhlV9LHWfVqlVIT09HdnZ2eJsQAuXl5SgsLITH40Hv3r1hs1mzgTdy5TUAgE1Tl0f8uYUQWLx4MRbcszC85LEQAvv370dlZSVcLhf69OmD+PjofXMouuPoXUQZf77a8LGLi4uxYsUKzJ8/v9n2QCCAXbt2wefzIT09HZ06dcLXX3+NTZs2oV+/fsjIyMAZZ5wBAPD5fMjLy0NWVlabC5cvvfSS2SUQEZEBYjXrGmHKW6MRCAbRqcfSmM26Mo1ceQ18Ph82TnnDslnXLEV3HISuC6zuWWrZrGuml156CeUV5ehldiFERDHoYMd0BAJ+XPSbsy2bdY3q6QLs67Kv23Jm9nQBa/d12dMlIooN7OnKdembWVBVBZdclRPeFks5Vyb2dOU6MK8IwWAAfZbObLbdCjm3LXj88cdj8qPG+S5CUqxZswavv/46hBAoLCzEX/7yFwghzC7LMvbs2YOFCxdi27ZtWL58OQ4fNucjR6zq8ccfxzfffIP33nsPixcvDn/cErWe3+/HAw88gLfffht79uzBP//5T3i9XrzyyiuYOHEidu7ciT179qChoQG6rkPXdVRWVvL8QUREbQqzrlzMunIx68rDrEtERFZQfeQIs65EzLpyMevKw6xLRETRjj1duZhz5WLOlYc5l1qLK16SFGPHjsWiRYswe/ZsrF27FmeddRbvFokQIQTefPNNTJkyBRdffDFP6BKoqoqLL74YPXr0wKJFi7Bx40aMGzfO7LIsYdOmTdA0Dffccw9CoRAURcGePXuwYcMG9OnTB3a7HStXrsT777+Ps88+G1OnTkVubi4mTJjAcwgREbUZzLryMOvKx6w/ZktzAAAgAElEQVQrD7MuERFZQUpyCj78+k1mXQmYdeVj1pWHWZeIiKIde7ryMOfKx5wrD3MutRaPApKiW7duSE5Oxp49e5Cbm4vx48dzmd0IOnDgAPr06QNFUaCqKk/okqiqiu7du6OqqsrsUizj4MGDGDBgAMrKyvDYY4/hxhtvROfOnTF48GDMnDkTdrsdZ511Fv74xz/ik08+QWNjI/Ly8hjQiYioTWHWlYtZ1xjMupHHrEtERFYQF+dk1pWIWdcYzLqRx6xLRETRjj1duZhzjcGcG3nMudRaPNuRFIqiYNy4cVi2bBkSEhLQoUMHs0uylF69emHLli0QQiAQCEDTNLNLsiRN07Br1y5kZGSYXYpl9OnTB19//TXS0tLwu9/9DkIIBINBqKoKu/3oIszdunVDfHw8QqEQAwsREbVJzLpyMesag1k38ph1iYjIGph1ZWLWNQazbuQx6xIRUbRjT1cu5lxjMOdGHnMutRY/apykUBQFY8aMwZNPPon77ruPdzREkKIomDZtGh588EEUFBSgqqoK8+bNQ9euXc0uzTLsdjuWLVuGYDCIHj16YPjw4WaXZBlDhw5FZmYm7r77bmRkZCAQCMDpdCIxMRGKoiA+Ph5OpxOKooS3ERERtTXMuvIw68rHrCsPsy4REVkFs64czLryMevKw6xLRETRjj1deZhz5WPOlYc5l1qLEy9Jmg4dOuBf//oXPB6P2aVYTvfu3bF06VJUVVUhKSmJ+zjCFi9eDK/XC7fbjZSUFAbvCHI4HLj33ntRWVmJQCCAW265BQkJCfjTn/6E5ORkXHPNNbDZbIiLi8MjjzyCQ4cOISUlBTabzezSiYiImmHWlYdZVy5mXXmYdYmIyCqYdeVh1pWLWVceZl0iIrIC5lx5mHPlYs6VhzmXWosTLykihAACgcAPtje9oZ7oe9FO4OgSwrJfm6Zp0DTtB+PY7XZ07NgRABAMBqXWYKpjKzXL2M9CCOi6jmAw2OyNMTExEYmJiQAQ9cugNy10bcbfwWAwiFAodMKxU1JSmj0uMTERmqbB6XQCOLrfExIS8N1332H69Olt8s+haRlxs85voVDIlHGJiGJRLGZdIxzN0yK2s65Mx4KglbOuWcSx/1s565pJCMGP7CEiMpCu6+H3MyF0AEffv6yadY3q6QLs67Kv23Jm9nQBa/d1ze7pAuzrEhEZhT1dmQQAJXZzrkzs6Ur241kw2nNuWxCrPV0lVl+4WUaMGCFycnLMLiOi3nzka+zevQuB9D1ml2KoM/u/AwDIzf+F1HF27NgBj8eDbt26SR2nrVrd9zsAwBW7hkT8uYUQWLduHc4++2w4HI6IP39bMKO8NwDg1Q57DR+7rq4O27dvR3Z2tuFjG6FpGXGz3kfz8/Nxzz33ICsry5TxZRkxYgRycnK4RjtRlLJi1j3n6V+j0XkIHtVndimWc1fhDeisJ6IdyvnxHBL8yVOD/f5k1NUo4O6NrIEuDR38KdDVFNhtvJ810jpVlkPVKjD6N2cx6xJRm2LFrFtaWoqbb74ZgwcPBgCkVg8DAFSnbjGzLKmM6ukC7Ouyr9tyZvZ0AWv3dc3u6QLs6xJR22PFnBur8xeMMrTvaihQsGXX5WaXYjmr+36HkKbhsp2DLZlzzXZtWS+EQjre6FJgdimW1NjYiO7du+O2224zu5SIOlXO5RUCarVnXS/AN7IYHVyxNYl3dN4CdNYTcbarXuo4wX49oapqzC5VfPhgMvb7kvFF0CXl+YNZPfA14gGL3nRTklaPDv4UuG0XGD52qkfHqKxL4bTFGT62EVKKD8KuV2PO/8wxZfwVK1aYMi4RUaxpVFRoig3x8fFml2I5Di0RCuLgjHfGbNaVSXeWACE34uP5sT6RpqilgOKCw+5AXJw1s66Z4oMBxPkbzS6DiChmjBkzBnfccQcAYNxf58LnLEF7l25yVfIY1dMF2NdlX7flzOzpAtbu65rd0wXY1yUiMkKszl8wyujt96CznohzDMjUsaYpQ38NlyVzrtlK2pmbs62uQ81B2P9TZXYZhuPES2q1RkWFBhXA6X88ghAi6le1abpQDDQYNOLx++v7ITG69+XJ6A4vFM0NJSChQXfcblROsHubPkLwv3fBHj12VUU5ussFoB87ltvq4ayo9YAip7kZSQICSpQdx3EBP1yBBtOa56qqmjIuEVGs6a5OR1lxGT74w1XhbU0fg3v8ShmK8t+PVqmpqUGHDh2iPu/KtvquV1AdDCIwZXCzlVSaPjYQOPp+x/3YMlPeGg2fz4cLrvgKLtd/82DT8ev1eqFpWvgjVDRNQ3l5OTp37gxFUSCEQFlZGdLS0nh39feMXHkNhK7j2uKzMX/+/PD2Hzs3BINBOBwOHsun6cCMv6OsqgzAeLNLISKKCYqihHsbjVChnaI/E+19XeN7ugD7uuzr/lTR0tMFoq+va3ZPF2Bfl4jICLE6f8EoJ87UsZNzZdIdXkBzA36XJXOu2X5Kzo62nNsWxAf8iA8Y+W/ttoETL6nVTnQxura2Fn/729+wYMEC+P1+PP3005gzZw6WL1+O8ePH49VXX8UjjzwS1eFl9V2voB7A8AevkzrOqlWrkJ6e3uxi9IYNG/DKK68gNTUV559/Pn7+859H9b48mSlvjQYAXHjl1xF/biEEFi9ejIULFza7GF1UVIR33nkHmZmZKCkpwZw5R+9+raiowH333YelS5fCZrNBCIF58+ZhwYIF6N69e8Tri4SRK68BAGyautzwsYuLi7FixYpmF6OPHDmCf/zjH1iwYAEaGxvxzDPP4IYbbsCKFStwyy23RFXT6cCMvwPRUy4REUVQXV3daWVdapmvvvoqZrKuGQ4ePHjCrHvkyBEsXrw4nHUB4E9/+lObzrptTU1NzUmzLo9jIiJq63rHX49QKISRh7+0bF/XqJ4uwL4u+7otZ2ZPF7B2X5c9XSKi2BCr8xeMsmL+C6hRFQx/8IbwtljKuTL92M30Vsm5Zhux4pcIBIP4bvrq8Dar5Ny2YNOFfzh23C4wuxRD8QghKYLBILZt2wYhBEKhEPLy8uB2uzFixAgIIVBeXo4VK1bg888/D69mQ6evvLwcgwYNwk033YTXXnuN+zDCvF4vdu7cCU3TcPDgQbz44ov47rvvIITAkSNH8O677+Kdd96Bpmnw+XzIycnBCy+8gOrqarNLb/OOPzdomoa8vDwkJCQgKyvL7NKIiIhOG7OuXMy6cjHrysOsS0REViCEzqwrEbOuXMy68jDrEhFRtGNPVy7mXLmYc+VhzqXW4sRLkmb37t24++67cd9996GiogJerxfPPfccQqEQ8vPz0aVLF7z22mvIz883u9So9M477+Dhhx9Gv379eLeIRFu2bEFmZiaeeOIJ+Hw+HDhwAPHx8fjyyy+xdu1aNDY2Yt++fQgEAnj11VfNLjcq7Nq1C3fddRfuv/9+VFZWwuv1YunSpQzgREQUVZh15WLWNQazbuQx6xIRkRUw68rFrGsMZt3IY9YlIqJox5wrF3OuMZhzI485l1qDEy9Jmi5duuC6667D9OnT4fF4ABz9CBAAGDVqFM4991wMGTIEe/fuNbPMqDV69Gjccsst2LZtG0pLS80ux7IuuOACnHfeeRBCwOfzoV+/fpg0aRLOPfdcbN++HW63G1OnTsU555yDoqIis8uNCl27dsWsWbMwffp0JCUlQQgRPjcQERFFC2ZduZh1jcGsG3nMukREZAXMunIx6xqDWTfymHWJiCjaMefKxZxrDObcyGPOpdbgxEuSJjExEQMHDsQZZ5wBp9PZ7Hvbtm1DXl4ecnNzkZGRYVKF0S0uLg5OpxPBYBChUMjsciyjvLwc+/btQ0JCwgm/X1BQgM2bN2Pt2rXo1asXAPCOnZ+o6dwwYMCAH5wbiIiIogWzrlzMunIw68rHrEtERFbArCsXs64czLryMesSEVG0Y86VizlXDuZc+ZhzqTXsZhdA1tQ0i15VVcTFxeHqq6+GoihwOp3o1KkTrr32Wnz11Ve4/PLLMWjQILPLjToDBgzA/v378fnnn2PhwoXo1q2b2SVZRk1NDfbu3Ys5c+ZA0zRkZGRAVVVcddVVaNeuHX79619j69atGD58OCZOnAibzYaUlBS4XC5cdNFFZpff5iUkJGDq1KlQFAXx8fH45S9/GT43EBERRQtmXbmYdeVh1pWLWZeIiKxAVW3MuhIx68rDrCsXsy4REUU79nTlYs6VhzlXLuZcai1OvCQpXC4XfvGLXwAAnE4nJk+ejOeeew7Dhg1Dp06dMHPmTJMrjG59+/ZF3759zS7Dkvr06YNbb731B9svu+wyAMCMGTOabT8+rIwfP15ucRbgdrtx6aWXAjh619PkyZPxzDPPICsrCzabzeTqiIiITg+zrlzMuvIw68rFrEtERFagqiqzrkTMuvIw68rFrEtERNGOPV25mHPlYc6VizmXWosTLykivF4v3nzzzZM+JikpCXFxcVixYoVBVcmlBAMAcMrX3VrffPMN2rVrh4KCAqnjtFUuyNvPQghs27YNK1eutOwdC8FQEID84/REqqursXnz5pOOLYRASkpKVJ4bepWXAQC+NmHfAkfPDX369DFlbCKiWDLPsRToX4zPX37opI8b4hFQFGDtK88bVFn0e7Z3HzTY6uDe8hps37GBEWl37r8V3fVEVG5bDn6yTGSdmTgS+33JWH5EYOWCl0/x6FQACt646xUDKrOGIz0ug7u3D38zuxAiohiRn58f7t2Ul7sA/LCPZKW+rlE9XYB9XfZ1W87Mni5g7b6u2T1dgH1dIiKjxOL8BaOENA2KqpiWVazMhQBCesiyOddsQU2DHgpZMue2Be1r6+Byucwuw3CceEmtNs+xFDizGKq/5uQPtAMIHfvPAhb374UGWx2S6+VeJNb6aVAUBWvr10odp62av/dOdNYT0cV5iuOrhc7qcwGcu3UAPinPb7bP3Gdjvy8ZzzX6DR9b6C5oaWOxP/dUY0fnyaFq5BwkOgJ4zqQmWaw27YmIjBZnj4dmc0CEVLNLsZx6zY2g4kOiEoSqcv9GmkNLhII42Jzct5GmO7yA5oaiOKHauH8jLeCMgx7vMLsMIqKYkZKSEp4AtKj6caieYijf7/NGZ+vmhIzq6QLs67Kv23Jm9nQBa/d1ze7pAuzrEhEZIVbnLxhl8SDjMnWsmb/3TqSHM7T1cq7ZPnOPOc2czZNDS1ROuBNJjgC+NrsQg3HiJbXa0YvRTqiIrTfWpgvFNofc5WN0XYeqqjG7jHH4grFNxulKQFGUY/v2dP8cxbFfo2PZIN3hhaK5YbcZf2eBrgjoegj2Ex274rivo2NX/kDAGYcGdzyysrJMGX/Pnj2mjEtEFGsyGm9D2YHDOPMPk3/yzwohmv1eOcGyg02POdH3rM710GrYg0E8fGkmsrOzT+tnfmx/fX/78fs+FvctAKy+6xVU+Hzo/9DM077LNJaPx59iylujoQsdu4qmYf78+T/4Po+/1rli826Ul5WbXQYRUczo3LlzuLfx9RYXNJsTirBuH9Koni7Avi77ui1nZk8XsHZf1+yeLsC+LhGREWJ1/oJRjMzUsea/GdqaOddsTTfUnzBnR3nObQsCTifqXbG3UisnXlKrnehidCAQwNatW3HmmWciFAphy5Yt6NevHzZs2IBJkyZBVVUIIbBs2TKMGzcO//rXvzBnzpwTXhDMy8vD3r17cdlllwEANE3DJ5988v/Zu/OwKuv88f/P+xzgcNgRAcUFDBUXcAOX3KLU0TFtc9q+1TTVpH5aZ6Z+U5NOVmZ7OaZlk1qj5oorZLmVKe6iKCoiIiCbKLIvZz/37w/lTszKzCOKr8d1eSlnu9/3+9z3Oc9O97nh1ltvxWAwXLX1vJDx9ZUYgW8n3e3S5SxfvpzWrVs3+J/RJ0+exGw2065dO0pKSqioqEBVVcxmMydOnCA8PJxu3boBUF1dzc6dO4mMjGTXrl08+OCDANhsNmbOnMm4ceMadR5/zcr/by41QM9Jj17xx1ZVlddee42X//mytu2pqsq+ffs4efIkXl5exMXF4efnp93nwIED5OfnM2rUqAaPVT/PQ4cOvab+5+qYFf0AGHHP1f9eQVFREUuXLv3Z/xk9Z84cRo8eTWho6FUf25Vwd+qxxh6CEEKIRnIlW/fw4cPXZOs2pivRuna7/bpo3avt11o3LS3tumrda9n13rpCCCFuTDfZ/4Fa7qSgt6PJfq57tT7TBflcVz7XvXyN+ZkuNO3PdeUzXSGEuDHcqMcvXC1uE5fiodPx7Rt/0i67kTrXlS72Zfqm1LmN7e7lfbBZbdz5YOpPrrveO/daMHDd9hvyV43L78QSLlFdXc20adNwOByYTCamTp0KoL0BmM1mzpw5w759+6isrGTXrl1UVlZSWlqKqqo4nU6Ki4sxmUycPn2aI0eOcObMGcxmM4qi4O/vf0O/OezevZu1a9cCcPDgQVauXInRaMRoNHL06FGKioo4ffo0drsdNzc3/Pz8qKio4MCBA5SWllJXV4fD4WDHjh1UVVVRVlb2kzMy3cg+//xzampqyM3N5V//+heVlZU4HA5Onz5Nfn4+R48exWazYbFYOHXqVIN5Fr9MVVVMJhNnzpxh79691NbWYjabKS4uxuFwYLFYUFUVm82G1WrFbrejqipWqxWn09nYwxdCCCEAaV1Xk9Z1LWld15HWFUII0RQ4HA5pXReS1nUtaV3XkdYVQghxvZPPdF1LOte1pHNdRzpX/F5yxkvhMjU1NRw6dAiz2YzFYsFms7Fq1SqioqJ47bXX8PLyYteuXTzxxBOUlpby4YcfUlRUxEsvvcTRo0fJzMykU6dOBAQEsGHDBi1qpkyZQlJSEp06dcLD48Y7TW29wsJC0tLSyM7ORlVV8vLyyMrKwul0Mm/ePBITE4mJieHBBx9k1apVjBkzhm3btqGqKjU1NUyZMoWSkhI++OAD8vPzmTRpElFRUY29WtcEvV5Pnz59aNeuHYWFhezatYtjx45x4sQJjh07xoABA5g/fz6bN2/G29u7wTzHxcXdsL8+6FJUVFQwceJEfH192bdvHxaLhbfffhs/Pz/+8Ic/kJiYyO23386aNWuIiorCYrFw77338vrrr/PPf/4Tf3//xl4FIYQQApDWdTVpXdeR1nUdaV0hhBBNhbSua0nruo60rutI6wohhGgKpHNdSzrXdaRzXUc6V/xecsZL4TLFxcV89dVXLF68mKqqKhwOBwUFBezdu5eIiAjefPNNunTpAoCPjw//+Mc/uPfee9m6dSsFBQUYjUb69euHoij06dNHe6MtLy+nsLAQh8PRyGvYuHbv3s38+fPZsGEDTqeTmpoazpw5g6Io3H333bzxxhvs2LEDq9VKYWEhADExMbz55ps4HA6Ki4vx8/PjxRdfZPTo0ezYsaOR1+jaoygKwcHBnDx5kn379vHGG2/wwAMPoCgKpaWljBo16ifzLN+8+WW7du0iOjqayZMn07FjR23eoqKiiIyMZPTo0Tz77LOEhYURHx/Pd999R0ZGBhaLBV9f38YevhBCCKGR1nUtaV3Xk9a98qR1hRBCNBXSuq4lret60rpXnrSuEEKIpkA617Wkc11POvfKk84Vv5cceClcpn379rzzzjtMnjyZ5s2ba5c7nU7tlNv1R9YbDAa8vb1xd3fHbrczfvx4OnXqxMsvv4zVaiUgIAC9Xo+iKPLGcM5dd93F+++/z7hx49DpftyVFUXR5svpdDaYL39/f9zc3NDpdDidTjw9PfHy8tLmXfyo/pTShw4don379lgsFpxOJ25uZ08U/EvzLH7e+fu/TqfDx8eHKVOmsG/fPubPn4/JZMLb25uKigoCAwNp1qwZc+bMYeTIkQ22cyGEEKKxSeu6lrSua0nruoa0rhBCiKZCWte1pHVdS1rXNaR1hRBCNAXSua4lneta0rmuIZ0rfi/ZCoRL6PV6QkJCtBen0NBQFEUBIDY2lpycHCZPnszJkyfx8PAgJCQEnU6Hl5cX/v7+rFixgh07dhAREYGPjw8BAQEoikJISIicBhm0eQIwGo0EBAQAP76Zenl5/WTePTw8CAoKAqB58+YN5t3Hx0eOxj+Pr68vn3/+OZMmTWLAgAH07duX7t278/rrr5OUlIS/v//PzrP4ZX379uXQoUNMnjyZ0tJSTCYTc+bM4fTp07Rs2ZJVq1Yxc+ZMioqKKC4uZvTo0eTm5tKrV6/GHroQQgihkdZ1LWld15LWdR1pXSGEEE2DIq3rQtK6riWt6zrSukIIIa538pmua0nnupZ0rutI54rfy62xByCaJn9/fyZPnqzFyJtvvsnevXtp3rw5zZo14+OPP8bhcKDX6/Hw8OCtt97C09OTQYMG4XQ6cTqdWK1WjEYjiqLQu3dvFEXh9ddfJzc3F0VR8Pb2buzVbDTx8fHaNxR69+5Np06d+Pzzz+nYsSMjR45Er9ej1+u100iHhobSpUsXOnbsCMArr7yCu7s7b7/9Np6engwZMkS+8XCe1157DZvNhru7O56eniiKwt///nfq6urw8PDQIuVi8yxh/cuaNWvGjBkzGuz/ERERqKqKl5cXw4YNw9PTkzfffBO9Xk+LFi3o3bs3RqOxsYcuhBBCaKR1XUta17WkdV1HWlcIIURT4Oaml9Z1IWld15LWdR1pXSGEENc7+UzXtaRzXUs613Wkc8XvJQdeiivC6XRSWVn5k8utVqt2fUlJCY888gjV1dXa9Q6HQ7tN/d/nq6ur0/5tNpsByM/P55FHHsFqtV70PldL/Rv9xdb7Sqqrq6O2tvaiyzGZTABUVVURFhZGnz59tHmCs/NbVlbGQw89RG1tLQAWi6XB3+fPYf3jXUtcOc+qqmKxWKiqqrrotnSxbax+3s53/jxXVVVd8XH+HldrO72Y6upqzGbzzy77/P0foKamBrj4a4HNZnPNIH8Hh90BNM7cwrW5vwohRFN1I7bu1aCqKqqq3tCt60pnO1Bt0q3bWOq33abcuo3JYXfgcDobexhCCHHDsFgs2vuZw3H2V/md3wlNrXWv5mdl8rmufK57uRrzM11o2p/rNvZnunBt7q9CCNEUyWe6rlP/2diN2rmuJJ/pupaqqqhcfNuF67tzrwU36me6ihwlfnXFxcWpKSkpjT2MK+rkp/soyC9gnXdaYw/lqkqqjQRgtPdxly6ntrYWNzc3DAaDS5dzrYo8FQzA8dASlzx+eXm5dir4pig6chkAh47/6aov2+FwUFNTo51WvqlZEX0zAPcc2tEoyzebzfz1r38lIiKiUZbvKnFxcaSkpDTNHVKIG0BTbN1/LE8lDQtl+trGHkqTc9//lhBZVkiwWoVO0TX2cJqcfb1ux+Jpw+QpHwBdaQ8H/Q9/k5mq6gDc9PJ91iutxNuPo8YIBox6S1pXCHFNaYqtW1lZydSpU3FzO/t+ltf6FrJ93Zt0+9Y3aCg1Ll+Ww+k4+6ssb9DWPdujdkyerjn4wG63a9tuU1Pfm3V1zRtl+SoqDoejSbZuibcfmcYIsiu6NNoY5HNdIcS1pil2rnym61pXs6lvNPKZrms1dmc3dSXevhQEdeWux2c39lCuqF/r3Kb3X03iqtPr9YRHhDNh7OjGHspVteGNVQBMmDChkUfStK365zxA5vlyrVv5NSDz5wp7U7MAmHDnbY08EiGEEK6k9/HAqHMjPCiosYfS5Lh56nFz1xER1q6xh9IkHVbNOBUICQ9v7KE0OY5KL1BVbrrppsYeSpPkNFlpFxhIuGy7Qgjhcn5+fkyaNEn7+Z/r0zHqnE26fesbtG2YvM+4mvTo5avvzbbhbRt7KE2O02QlIjCQB5+Wz8uFEKIpk890XUua2nWkoV1LOtu1nCYrVuONd0I5OfBSXAFnD+xtqmcM/DU36npfbTLPv4/Mnwucm1KZWyGEaNreH961sYfQdC2e2dgjaNL+r7EH0KQ91tgDaNLanfsjhBDC9S78TOOGaF9p0KtGevT3kN50FWlNIYS4MdwQXduYpKldRhra1aSzXelGbe0b83dcCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQlwGOfBSCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQ4hLJgZdCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQl0gOvBRCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYS4RHLgpRBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIcQlkgMvhRBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIS6RHHgphBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIcYncGnsA4vr3brCTowZwTz3W2EO5qkbuX0tkWSEnslY29lCatLzmMVg8bXz55ZeNPZTr0uDaU/ibzPDl7Y09lCZnck0dOf5R0POzxh6KEEIIIYQQQgghhBBCCCGEEEIIIYS4iuTAS/G76b3dUfTOxh7GVac36NC7KY09jCbPw2nC0diDuI7Z7UZU5423f14N3no9Qe76xh6GEEIIIYQQQgghhBBCCCGEEEIIIYS4yuTAS/G7vTe8a2MPoXEsntnYI7gh/F9jD+C691hjD6DJanfujxBCCCGEEEIIIYQQQgghhBBCCCGEuLHoGnsAQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEENcLOfDyAoqiBCiKskxRlAxFUY4oinKzoijNFEXZoCjKsXN/B567raIoyseKomQpipKmKEqvxh6/EEIIIYQQP0daVwghhBBCNEXSuUIIIYQQoqmS1hVCCCGuXXLg5U9NA9aqqtoJ6A4cAV4GvlNVtQPw3bmfAf4IdDj3Zywgv3taCCGEEEJcy6R1hRBCCCFEUySdK4QQQgghmippXSGEEOIaJQdenkdRFH9gMDAHQFVVq6qqFcCdwNxzN5sL3HXu33cC89SzdgIBiqK0vMrDFkIIIYQQ4ldJ6wohhBBCiN7JaS0AACAASURBVKZIOlcIIYQQQjRV0rpCCCHEtU0OvGyoHVACfKkoSqqiKLMVRfEGQlVVPXnuNsVA6Ll/twLyz7t/wbnLhBBCCCGEuNZI6wohhBBCiKZIOlcIIYQQQjRV0rpCCCHENUwOvGzIDegFzFRVtSdQy4+n5QZAVVUVUH/LgyqKMlZRlBRFUVJKSkqu2GCFEEIIIYT4DaR1hRBCCCFEU+SSzgVpXSGEEEII0ejkM10hhBDiGiYHXjZUABSoqrrr3M/LOBsyp+pPwX3u79Pnri8E2px3/9bnLmtAVdXPVVWNU1U1Ljg42GWDb0yqqlJbW4vD4WDv3r1Yrdafvd3+/fupq6vTLnM6nezYsYPU1FRKSkr49ttvKSkpoaysjKKiIk6cOKHd1mw2s2/fPs7248+z2Wzs3bsXm81GSUkJlZWVHD58uMEyU1JSsNvt2mVWq5Xvv/+erKws7bKsrCxOnz7NxRw/fpxTp041WLf09HQ2b96Mw+H4ye0dDgcpKSlYrVZOnz5NbW0tBw4c+Nl1UVWVEydOsH79esxmc4PrrFYre/fuxel0/uI81C/zYuO5mIyMDMrKyhqM4fjx42zcuJFDhw5RWlp6SY8DYLfbSUlJ+dUx/tL9t2zZQnp6+mXd/2ooKChg3bp11NXVYbVaKS8vx2Qy4XA4qKiooLy8nNraWu05tlqtVFdXo6qqdvu6ujpUVaWqqory8vKfXFZRUfGb5/Biz3tVVRW1tbWYzWY2bNhAbm6udt2Fz3u93NxcioqKLm9yLkFxcTHZ2dnaz/Xbdf18qapKeXk5ZrOZmpoa1q5dy8mTJ3/u4S7LxdbdZrOxadMmMjMzr+iyhBDiGiCte5mkdaV1LyStK637a6R1hRDiqnJJ54K07oW3k9aV1r3U+0vrSutK6wohxBUjn+leJulc6dwLSedK5/4a6VxxOeTAy/OoqloM5CuKEnXuoiFAOpAIPHruskeB1ef+nQj8WTmrH1B53im9byhOp5N///vflJWVMW3aNGpqahq8Iauqqv382WefUVJSol2Wn5/Pl19+idFoZNasWZSVlXHy5El++OEHtm/fzoYNG7TbVlZWMmPGDJxOZ4MXt/MfX1VV6urqmDp1KhUVFSQlJZGbm8vcuXO129lsNqZOnYrZbNbut3fvXtatW4eHh4d2u1WrVpGWlvaTZQB8/fXXWkSpqorZbObDDz/Ew8PjJ+tcv8yPPvqIyspKVq1axcmTJ/nss8+06y9cF1VVmTp1Kg6HA52u4a5aW1vLf/7zHxwOxy/Og8Vi4aOPPsJqtV70+gujafHixRw7dky7zuFw8OGHH6IoCsuWLSMjI+Oi97uQqqqYTCamTp3aIA4vdrufG9PRo0dJSEjAYDD84rJ+bRwXe/yf+/nn7n8xTqeTjz/+GIvFQk1NDa+++irTp09n7dq15Ofn88ILLzBz5kx++OEH7fbTp0/n6aefxmaz8dlnnzFt2jTGjh1LaWkpCQkJzJw5k4kTJzJ16lTWr1/Pa6+9xqRJk1i1atUlrV/9ZRc+7wB79uzh6NGjJCcns3Xr1gbbef3zfuFjrl+/np07d17Sc/5r47rYdXv37uXrr7/Wfq6urmbatGkNtuvNmzeTn59PYmIihw8fxt3d/Tc/jxe7zYXrfv71qamprFmz5ndte0IIcS2S1r180rrSuueT1pXWldYVQohri3Tu7yOtK617PmldaV1pXSGEuLZI614+6Vzp3PNJ50rnSucKV3Fr7AFcg54FFiiK4gFkA49x9gDVpYqiPAGcAO47d9tvgJFAFlB37rY3rNLSUhwOBxaLha+++opTp07x3HPPYbPZWLBgAXV1ddx8883Y7XZWrFhBcXEx48ePZ+3ateTk5JCdnc26desYOXIkgwYNwmg0at+qmDhxIgMGDKBXr16cOXOG//znPyiKwlNPPcXOnTtJTk5m1KhRtG7dmtmzZ+N0OjGZTBgMBvz8/FBVlby8PKZMmUJYWBgPPPAAdXV1fPHFF5w5c4ZnnnmGFStWUFBQgM1mIzExkZSUFE6cOEH37t1JTk5m8+bNjBw5ktjYWODsC9+2bdvYtm0bw4cPx+l0cuDAAc6cOUNKSgrr169nyJAhdO3alVmzZmGxWKiursbDw4PAwEBUVaW4uJj33nsPb29vxo4dy549e9i4cSN6vZ6ePXuybds2unXrxu7duwkNDaVNmzasWbOG+Ph4KioqmDFjBhaLhWeffZa0tDQ2btzIH/7wB6Kiopg1axZWq5Wamhrq6uqYP38+BQUFDB8+nK5duzJv3jzOnDlDp06deOCBB9DpdDidTr777jsSExO55557cHNzY9euXQwcOBBFUfj+++9ZvXo1999/P2VlZcTFxZGTk4PJZCI2NpaNGzfSt29f5syZg9PppK6ujqKiIvLz84mLiyMhIYH777+flJQUQkND2bRpE/n5+bRp04Z7772XxYsXU1RURHh4OIWFhZw4cYLq6mqWLVvG3XffrUVkTk4Od9xxB1lZWRQWFuJ0OrnttttYvHgxd9xxBzk5ORgMBsrKyli/fj2tW7fm4YcfJjU1lfXr16PT6bjvvvvIyspiz549REZGEhcXR1VVFb179yYpKYlu3bqRmJhIeXk59913H56enhQVFdG/f39Wr15N+/bt2bx5MzfddBMbN24kKiqKu+66Cz8/P3JycoiOjubJJ5/E29sbgEOHDlFSUoLT6USn0zF27FgUReH//u//qKur4/HHHwfg7bffpn///uzatYtBgwbRrFkzdu3aRX5+PsePH+eWW24hMTGR+Ph4Dh48yIYNGwgPD+fBBx8kMTGRvLw8YmNjqa2tZc6cOVRUVPDUU08RFBSEzWZjxYoVWCwW7HY7CQkJHDp0iMzMTIYPH87SpUspKSmhoKCAZ599FoBdu3aRmprKrbfeio+PD35+frRv357ExERGjhyJh4cHSUlJ9OvXj4yMDNq1a0dubi7ffvstN998M6NHj0ZRFG2fycjIYPHixbRq1YqQkBAOHz7Mv//9b+Li4hg4cCDl5eV88skn2Gw2xo8fT3BwMCaTiVWrVtGqVSssFgtz5swhLy+PVq1a8dBDD7Fy5UrS09O5++67ycnJYdSoUWzcuJFhw4bh5eXFgQMH2LlzJ9nZ2QwdOpTbbruN5cuXa+s+YsQIvvvuO3bu3MmoUaNYuXIleXl52Gy2RnglFUIIl5PWvUzSutK60rrSutK6QghxTZPO/R2kdaV1pXWldaV1hRDimiate5mkc6VzpXOlc6VzhavJGS8voKrqfvXsabW7qap6l6qq5aqqlqqqOkRV1Q6qqg5VVbXs3G1VVVWfVlU1UlXVGFVVUxp7/NcCs9lM586d6dChA4mJicyfP5/Bgwfj5eWF0+nEZrPRqlUrBg4cyKJFi+jSpQtRUVH07duXiIgI4uPjqaqqYv369cDZ0/c+9thjLFiwAJPJRHV1NSNHjqSwsJD9+/czf/587r77btq2bcuSJUvo0qULAwcOxGw2YzabWbVqFU6nk+rqav7f//t/JCcnU1xcjMlkomfPnoSEhPDdd9/RuXNnevXqhU6nY926dYwbNw673Y7dbmf+/PnceeedREREaOupqip6vZ4nnniC//73v7Ro0YK2bdsSFxfH3Llz+eMf/0iHDh1ISkoiNDSU4cOHYzKZtDcPu91OdXU199xzD+np6aSnpzNv3jzGjh3LsWPHiIqKok2bNgwePJg9e/aQlZWFxWJhxYoVOBwOampqGDJkCLW1tezevZu5c+dy++23ExkZyapVq2jdujVDhw7FZDKh1+sZOHAgDzzwAF988QWJiYmEhoYSHR1NWVmZ9sbidDrx8vLiz3/+M9OnT9diaeDAgQAYjUbuu+8+5syZQ1ZWFtu2bSMpKYkvvviCQ4cOkZaWxrJly+jYsSODBg3CbDaj1+v56quvOH78OB9//DFHjx5l4cKFpKamYjKZGDp0KCdOnGD79u3odDoGDRpEUVERMTExREdH07JlS22dU1NTyczMJDk5mezsbBYuXIibmxuLFy8mPz+fTz75hJSUFBYvXozJZOKTTz5hxIgRZGVlkZyczNy5c3nyySc5fvw4vr6+tG/fnieffJLk5GRKSkqYO3cuJSUlJCYm4uvry4gRIxg2bBhffvklOTk5bNu2DVVVWb16NT4+PrRt25ZbbrmFzMxM9uzZw5QpU/jggw8wGAzk5uby97//ndmzZ2M2m1myZAkPPfSQ9u2f9PR0nnrqKaxWK82aNUNRFIqLizl69Cj9+vXjvvvuY+bMmbz99tvcfvvtFBQUsHnzZuDst5UKCwv59NNPGTlyJEeOHCElJYWFCxfSsWNHYmJiqK2tpW/fvrRr145FixZx8OBBMjIy6NSpE3369MFkMrFt2zaefPJJLBYLqqqSkJBAREQE3bt3Z9myZdq3K/7617/yxRdfUFtby/z588nLy+O7777D3d0dRVHw9/fn1VdfJTExEZ1Ox//+9z+effZZIiMjG3yLo/6bWg8++CADBw7E6XRiNpt5/PHHSUhIoLa2lpqaGoYOHYq7uzvffPMNO3bsoKioiA4dOjBgwACOHj1KVVUVI0aMIDc3l5SUFHJycnj22Wdp1qwZRUVFTJgwgcLCQjw9PQFIS0sjPT2dJ554gnnz5mnbbv26WywWFixYwJgxY2jbti1dunShR48etGrVyrUvlkII0QikdX8/aV1pXWldaV1pXSGEuPZI514Z0rrSutK60rrSukIIce2R1v39pHOlc6VzpXOlc4WryIGX4orz8/MjNjaWtm3bUlZWhtFoJCEhgZKSEqKjo/H09KRv376Eh4dTXl6On58fvr6+NGvWDG9vb4KDgxucmrp37960bdsWALvdTkREBFFRUTRv3hyTycS4ceOYOXMm33zzDVlZWURFRdGjRw/8/f0bjKtLly60a9cOHx8f6urqaNasGT179qRNmzbaOAIDA6mqqsLX15dWrVrRs2dP3NzcGDduHLNmzSIpKUl7IVYUhb59+9KmTRsA9Ho9Xl5eBAcHM378eL766iuWLVtGZmYmHTt2JDo6muDg4AZjat++Pe3btycwMBCTyYTZbGbOnDlERkbSsmVLvLy8aN68eYP5qF9+q1at6NKlC6GhoVRXVzN+/Hjmzp3LihUrOHbsmPYG1rx5c8rKypg9ezZ79uyhpKQELy8v1q9fT0pKCv3799fCRa/X069fP8LDwzGbzbi5ueHl5UVQUBA6nU67rra2lvj4eDZv3kxtbS3e3t6sWbOGgQMHkpWVRceOHenRoweBgYEEBwfj5+dHUlISY8aMITExEaPRSJs2bdixYwfr1q0jPj4eX19ftmzZwvfff88tt9yCv78//v7+eHl5NfjGgaIoDBkyhKSkJEpLS+nbty/t27dn2bJl3HHHHWzcuJHq6mr8/f05deoUe/fupWXLloSFhWnfNoiIiMDPz4+lS5eydu1aTp8+TbNmzdDpdKxatYpBgwZx6tQpZs+erX3To34M9Tw9PbXn22g08uCDD/L666+TlZVFcHAwU6dO5a233iIpKYnk5GQyMjJYvXo16enppKSkEBMTw/vvv0/Lli1JTk5GPXdq+BEjRmAwGFiwYAEvvfQSL774Ip9//vlPTjFdUVFBSUkJKSkptG7dmpCQEPz9/enfvz8+Pj4EBwcTHR1Nx44dKSgoAECn0+Hr60tgYCClpaUEBQXRunVrYmJiAPD29iYuLk7bNxVFoU+fPrRu3Ro3NzciIiIoKioiMTGRESNGoNPpUBSFbt26kZqaSseOHbFYLBiNRlq2bEmXLl0azJvNZqOmpoaIiAg6d+6MwWDQXit0Oh02m43WrVsTFRVFhw4dtHHr9Xp8fHwICgoiICCAXbt28c033xAfH09BQQE33XQTLVu2JDIykgEDBrBmzRr69evXYNl9+vShbdu2OBwO8vPzG6y7wWDgySef5OOPP2bjxo34+fkREBCA0Wi8xFc9IYQQNxJpXWldaV1pXWldIYQQTZW0rrSutK60rrSuEEKIpkg6VzpXOlc6VzpXuIoceCl+t7q6Or755hscDgeenp4NXiwURaG2thY3NzfatGmD3W7XrlcURXtDPv+y8134WBf+7XA4qKyspFevXhw8eJC4uDgWLlzIwoULG3wT4sJl1f85/7Hrfw4PDycvL4+kpCQ2btyI0+mkvLyc2NhYDh482GB8y5cvZ9GiRXh4eODr64uiKDidTs6cOUOfPn04ePAgffr0YenSpdppqC+2fvXr4nQ6AWjTpg02m027vmvXrvzwww8N1uv8+6qqSmlpKb179yYtLY3evXuzZMkSFi9ezMmTJyksLKSurg4fHx8cDgfV1dUYDAZCQ0O1+8PZb4wsXryYr776SntDPn855/87IiKCw4cP06xZM7p3787WrVvp0aMHffr0YfHixSxcuJCSkhJ0Oh29evVi1apVjBkzhm+//Zb+/ftTW1uLp6cnAQEBGAwGqqqqMBgMBAUF4e7uri3HaDQSEBDA6tWrWbNmDYqiMHDgQBITE+ncuTOenp7079+fefPmceedd5Kamkrnzp0JCwujc+fOhISEEBERga+vrza/bdu2paamhsOHD9O6dWssFgt6vZ4hQ4bw2WefER8fz7FjxzAYDLi5uaGqKhEREWRmZrJs2TIyMjIaPH99+vRh9erVJCUl4efnR0ZGBmvXriUxMZFOnToxcOBAZsyYwT333MNNN91EeHg4CxcuJCUlhYqKCkJDQ6mtrWX79u0MHz4cgIqKCrKysigpKcFgMNCmTRtyc3NZsWIFhw4dIiQkhI4dO9KiRQvCw8Px9/fXQgLg5MmT2nPZu3fvn2zr7du3Jz09naSkJLZs2aLtIxfuZytXrmTp0qU4HA5atGhB9+7dSUxM5Oabb9a29/nz5/OPf/yDHTt2YLfbqaqqYvny5SxZskSbczgbey1atGDBggXMmzeP2tranywvKyuLhIQEli9frp0W//xxV1dX4+npib+/P56ensTExLBx40ZWrVrFunXrWLBgAR999BGzZ8/GarVedNu9cN3rv73VvXt3bR+/8LVICCHEjUtaV1pXWldaV1pXCCFEUyWtK60rrSutK60rhBCiKZLOlc6VzpXOlc4VV4ty/mlUhevFxcWpKSlN64zeNpuNnTt30rx5c6Kiojh48CBdunShqqqKsrIypk2bxgMPPMCpU6fYs2cPDz/8MJGRkdjtdgoLCwkLC+PkyZN07NiR9PR07Q3xm2++Yfz48dqpvdPS0ujQoQPHjx8nJiaG7Oxs/P39yc7OpqKigl69euHt7c3OnTvx8vLC3d2d0NBQ3njjDd59912Ki4uJioriyJEjtGnThuPHjxMdHU1paSkWiwUPDw/tiPWMjAwKCwsJCAggPDyc3NxcysvL6dmzJ82bN0dRFHJzcyktLaWsrIyYmBiCgoJIT08nJiaG/fv3c+bMGe3yHTt24OHhgbu7OxEREfzzn/9k6tSp5Ofn07VrV44dO4bT6WTq1Kk888wzLFq0iMGDB2tH3auqyu7du3F3d8fd3Z3o6GiOHDlCTEwM+fn5eHp6UlBQQGlpKd26dSMwMJCdO3dqy+zWrRv79u3DbrdjNBr5+uuv6dmzJ/7+/nz55ZfMmTMHvV7PsWPHqKqq0tY1ICCAgwcPEhMTQ05ODkFBQXh7e5ORkUFMTAxpaWkEBwfj6elJXl4e3bt3x2KxsGPHDoxGI+7u7vTs2ZPKykoyMzOJjY1l//79REVFacEXHR3NBx98oH17JzIykmnTpvHBBx9gNptp164dhYWFHDlyhGbNmhEWFkZISAjjxo3jX//6F5GRkdTW1rJ//3769OlDeno6rVq1IigoiJKSEvbv34+HhwcRERFMmTKF5557joSEBPr06UOHDh0oLCzEy8uL6Oho8vPz+fjjj5kxYwZ2u51du3bh7u6Ot7c3Xbt25cCBA1pwxcTEkJmZSadOndDr9ezZs4fa2lp69eqFzWbjwIED6PV6YmNj8fPzQ1EUrFYrR44cITo6msOHD3Py5Enatm1LVFQUJpNJ27YVRaG0tJTU1FQAevbsSWBgIGlpaVRVVeHp6Um3bt2orKzkwIEDGAwGevfuTVZWljae1NRUbDYbqqoSGxvL//73P8LCwujZsyd6vZ4WLVpw6NAhTp8+jZ+fH+3btyc/P5+oqCjq6uo4c+YMBoOBkpISysrK6Nq1Ky1btqS8vJzjx48TGxuLTqfD4XCQlpZG165dKSgowMfHB7PZTEZGBpGRkdx0000NIqB+vYKDg2nRogUmk4nw8HDS0tK0oLBYLBgMBrp37857773H0KFDCQ4O1gJWVVV69OjBe++9x+zZszl+/DhnzpwhKiqK8vJyunbtyuHDh+nYsSOenp4UFhaiKAqhoaEcPHhQ23/q1z0yMpLMzEyqq6uJjY3FZrNhsVi0b6qJqysuLo6UlBQpRyGuU9K60rrSutK60rrSuuLnSesKcX2T1pXWldaV1pXWldYVP09aV4jrl3SudK50rnSudK50rvh5v9a5cuDlVdYUw+WXOJ1OEhISSEtLw2AwMGbMmJ+cvvdCVVVVvP/++4waNYq+ffte9rLtdjvTp08nPDycu++++5o4AtzpdDJr1iyMRiOPPPJIgzHV1tYyY8YMamtrCQgI4PHHHycgIOCKj0FVVTZt2sTGjRvx8PBgyJAhDBw48KrPz759+0hISMDDw4O+ffvSrFkzVq9ejYeHBwMGDGDYsGE/O6aqqipmz57Nc889h5ub2yUtr66ujhkzZlBdXa3Nb2BgYIPb/PDDD9jtdoYMGXJNbC9XSlZWFp999hkvvvgiLVq0aOzhXLL9+/ezaNEiXnnlFe3U+/v372fJkiV4eHjQu3dvRo4c2eBU9uL6Jx/QCXF9k9aV1pXWPUta9+qR1hXXE2ldIa5v0rrSutK6Z0nrXj3SuuJ6Iq0rxPVLOlc6Vzr3LOncq0c6V1xP5MDLa8yNFi5w9o2yfju78BTZv3T7S7nt1XicK+nXxnS1xvxbn5OrMYb6yy5lTJc7T5cy/+ePp6m4FveFS3GxcV8L265wLfmATojrm7SutK607sXHUH/ZpYxJWve3uRb3hUshrXtjktYV4vomrSutK6178THUX3YpY5LW/W2uxX3hUkjr3pikdYW4fknnSudK5158DPWXXcqYpHN/m2txX7gU0rk3pl/r3Es71FqI3+G3vrhcqReja/FF7dfGdLXGfC3MzcXGcKljutzxX8r8N0XXwvN9OX5uG7ke10UIIUTTJa37I2ndXx6DtK5rXAvP9+WQ1hVCCHE9kNb9kbTuL49BWtc1roXn+3JI6wohhLjWSef+SDr3l8cgnesa18LzfTmkc8XFyPlNhRBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIS6RHHgpriiTycTy5ctxOBysWbOGhQsXYrfbtetTU1M5dOiQ9nN5eTlJSUnaqXdVVSU9PZ2amhrtNtnZ2WzdurXBcpxOJytXriQhIQGn0/mbxuh0Oi96n1OnTrF+/fqL3icjI4Pdu3f/puUAWCwWli1bhsPh0C5LSUkhPT1d+7mqqoojR440mIP625eWljJ9+nTS09Mxm80cPnyYzMxM6urqOHToEGlpaRw8eJCqqqqLLt9ms7Fs2TJsNhvff/89X375JVar9TetQ3JyMjk5OdrPJpOJgwcPauO9kKqqrFq1iurq6gaXJSUlUVFRoV1WWlpKVlbWJY3BbrezbNmyn4z9Ystyhc2bN5OXl6f9XD//F85BQUEBp0+f/tXHy87ObjAXF7JarSxbtqzBvuN0OklLS6OmpkZ7Tut99913FBUV/ZZVQlVVVq9e/bPbzi/Ztm0bx48f/833q5eVlcX27dsv+/5XSv32U1pa+pP9dN26dZw6dUr7+cL99EK1tbWsXLnyN78e/ZLMzEx27tx5xR5PCCHE7yet25C07o+XSev+SFpXWvdSSOsKIcS1R1q3IWndHy+T1v2RtK607qWQ1hVCiGuLdG5D0rk/Xiad+yPpXOncSyGde3Fy4KW4IlRVxWazUVNTw8qVK6msrCQhIYHBgwej0+kwmUw4nU5SU1M5fPgwZrMZp9NJRUUFa9aswWazaS/ShYWFWCwWVFXFbDaTnZ3Ntm3btJ8dDgdlZWUkJSUxcOBAbfm/9MdsNmO321FVlYSEBHbt2qVdV3//U6dOsWHDBqxWq/YCVn/fI0eOkJKS0mB9z3/M+j/1UVT/s8ViYcWKFVgsFqxWK6qqsm/fPo4cOaLNgclk4uTJk9rj5ubm8sknn+B0Olm7di0Gg4GwsDDef/99NmzYQGpqKlVVVRw8eJADBw7w6quvsnfvXlRV1ea5/vmoD8mamhrmz5/PLbfcgl6v/9X5slgs2Gw2VFVl69at5ObmYjabUVUVq9VKQUEBcDYo6tejPrgsFguJiYnU1NTgcDgwm80AfP3115SXl2uPU1tby6lTp36y7Po5rH/M+mWsWLECq9WK0+nEarVqc5+YmEhVVZW2zZw//+c//+e/KdXfrv4+5z/e+bepn88tW7aQl5f3kzm4cDllZWWUlZX96vyWlJRQVVV10etsNht1dXWsWLECu92OzWbDYrEAkJ+frz2n529T33//PYWFhdr4fm4fcDgcDZ6npKQkLVzq58Rut2uPe/7+UX+92Wxm+/btZGdna9vvxd6sL9yO6tfD6XRy/PhxduzYof18sfFarVZtHD+3j9ff5uce41LmIDExkdLS0p/spxs2bOD06dPanF64n144jqqqKlatWvWTsTudTmw2mzYPF9u+fm6smZmZl/UfTEIIIa48aV1pXWldad0LXxOkdaV1hRCiqZDWldaV1pXWvfA1QVpXWlcIIZoC6VzpXOlc6dwLXxOkc6VzXcGtsQcgmobMzEw+/fRTFEWhpqaGrVu3sm/fPrZt24ZOp+PgwYPEx8cDSOq5xAAAIABJREFUsGbNGnbt2kXnzp0ZMmQIx44d49VXX8VmszF58mSKioqIjIxky5Yt/PDDD5SXl9OlSxe2bdvG2rVr6dq1KzqdjtTUVL7//ntKSkp45plnWLt2Lf7+/uzatYvnn3+ezZs3YzAYsNls2hH199xzDwkJCRgMBrKzszEYDNxzzz189tlnREVFkZaWxiuvvILRaGTixIksX76c3bt3U1xczODBgwG0N4qkpCSaN29OUFAQf/zjH/H29mbJkiV4eHgwaNAgUlJS6N69OyUlJbz11luUlJQwefJkAJKSkti6dSsxMTGMGDGCzMxMbr31VgC+/fZbFi5ciK+vL2vXrsXNzY0uXbpw5swZ7rrrLkJDQwkODubBBx+kvLyczZs3Exsby/Lly0lLSyM+Pp4OHTrw0UcfoSgKZWVlpKSkkJKSwqpVq9Dr9TzzzDOsXr2aFi1asGPHDv72t7+xdu1agoODcTgcrFixAp1Ox2OPPYaqqixZsoSFCxcyatQo4uPjOXr0KHFxcXz66aeUlpbSrFkznnnmGT788EOsVivZ2dlYLBamTp1KXV0djzzyCFarlf/+979UVlby8MMP06JFC7Kysjhw4AB/+tOfMJvNrF+/HqPRyP79+wkMDOTRRx/lww8/BOD06dOUlZUxYcIE3N3dsdvtvPHGG5jNZj755BPKy8t57LHHyM3NpW3btpw6dYq2bduSl5fHpk2baNOmDc899xzu7u589913rFmzBpPJRJs2baiursZisfD222/j6emJ0+lk7ty57N+/nx49euBwOFi0aBFz587lzjvvZMCAARw9epSKigq6detG69at+eKLL7jpppto0aIFSUlJtGrVis6dOzNz5kzi4+NJT0+ne/fuZGZmYrFY8Pf3Z9q0afzlL3+huLiY1NRU+vfvz9SpU1EUhfLycsrLy/nvf/+L0Whk7Nix5ObmEh0dTVlZGe+88w6nTp3i9ddfx+l08tVXX+FwOBg+fDjV1dXExsYSGhrK3Llz6dmzJ+vXr6dr167cfvvtvPPOO1gslgbf2DGbzUyaNAmAyspKnn76abZv387YsWNZunQp0dHRbNy4kRMnTnD06FG6d+/O4sWLOXr0KEOHDmXQoEHaY6mqyvbt21m2bBl+fn48+uijzJ07l9LSUlq2bEnPnj3ZunUrJ06cIDw8nFtvvZXDhw9r89OpUye+/PJL3NzcePHFFwkODmbjxo0YjUZiY2OZOXMmf/zjH1mwYAFnzpyhe/futG/fHk9PT/r06cP06dMJDAxk8ODBBAUFsWDBAmJiYti4cSPdunVj+PDhvPPOO9q2ClBSUsK7775LaWkpL730Eg6Hgy+++ILKykr+/Oc/ExUVRWZmJrm5udx22214e3uTkJDAoEGDmDVrFoqiYDKZKCwsZNasWTRr1oyHH36Yd955B71eT3V1NVOmTKFZs2aoqsrSpUtJT0+nX79+HDlyhGeeeYZdu3ZhNpspKytj+/btlJSU0LdvX9e+eAshhLgk0rrSutK60rr1pHWldYUQoqmR1pXWldaV1q0nrSutK4QQTYl0rnSudK50bj3pXOlcV5IzXorfrX4nfOihhxg3bhw6nY64uDhiYmIYNWoUW7ZsYeDAgcTFxQEQHR3N5MmTSU5OprS0FH9/f/71r3+hKArHjx/nyJEjnDp1ijVr1vD6669rwbNt2zY6dOjAsGHDuPnmm+nevTtjxozh2LFj5OTk8PXXXxMSEsK+fftQVZW8vDwKCwtJTExk3LhxNG/enPbt23PzzTdz//33M3z4cNasWUNhYSH79u0jICCA4OBgJk2axOnTpzl69CibNm1i8uTJ3Hzzzdr6WiwW5s+fz4QJE3jqqacICwsjMTGR5ORkDAYD/fv35+WXXyYrK4u2bdvi4eHBU089RXR0NDt37kRVVbp3787kyZPZtGkThYWFHDx4UHv8gQMH0qdPHx566CH69+/PmDFjsNvt5ObmsmPHDp5//nkKCwtRVZV169YRFxeHt7c3mzdv1uZ55cqVjBw5kueffx53d3e6d+9Oly5dePzxx0lPTycvL49vv/2W5s2bk5qaiqqq5OTkUFRUxOzZs+nWrRutWrVixYoVAPTr149///vfJCYmYjKZSE1NZc+ePbRs2ZL7778fg8HAzp07adeuHRMnTsTPz4+qqioOHTrE3XffTVhYGACjR4/mhRdeYN68eVRUVJCRkYG/vz/r1q1jw4YNBAYGcu+99xISEkLPnj1Zs2YNt956Ky+++CIGgwGz2UxOTg4TJkzAy8uLjIwMFEXhnnvu4bnnnmPevHncfPPNvP/++2zatInWrVuzYsUK3njjDf7yl7+g0519ycvLy6Nly5ZMnDiR9PR0XnrpJYxGI+Xl5cDZby3t3LmTd999l9GjR6MoCv3792fChAmsXr0as9nM/v37ad26NcuWLSMlJQWbzUZeXh7FxcVkZ2dz+vRpbDYb+/btIyoqim3btvHuu+/Sr18/MjMzKSsrY//+/VgsFsrLy8nMzGT58uXceeedPPfcc7i5uZGXl0dpaSl/+tOf8PX1JS0tDZPJhLu7O2PHjqVv374kJycDcMsttzBp0iSWLl1KcHCwFt1Op5MdO3Zo+8727dtp3bo1r776Kv7+/tp2Z7fbOXz4MH/729+Ijo4mMzOTlJQUCgoKtG9SnThxgrfeeosOHTrgcDhITk7mlltuoUePHg1eE+x2O1988QUvvvgif/vb39i7dy+RkZHcddddGI1G9Ho94eHhTJkyhf379xMWFqbNT9++fZkzZw6PP/44EyZMwMfHB4CwsDBWrlzJ4cOHKS8vZ9OmTdxyyy0MGDCAwMBA8vPzKSoqwul0snfvXlq0aMHKlSu1U11v27aNTp06MWTIEJKTkxtsqwAeHh6MHz+eYcOGadv9sGHD+Mc//sHKlSupra3l4MGDhIaGavu7u7s7S5Ys4YknnuDxxx9HURSOHj2Kw+HgnnvuQafTkZGRwQsvvEC7du20b505HA62bNnCoEGDGDBgAGfOnOHQoUOsXr2agIAANmzYwOTJk7VvxAkhhGhc0rrSutK60rrnk9aV1hVCiKZEWldaV1pXWvd80rrSukII0VRI50rnSudK555POlc615XkwEtxRZSVleHt7U1wcDCenp7o9Xr0ej0Gg4FXXnmF1NRUPvzwQ1RVJSwsDIPBgKIo2Gw2QkJC8PPzw2AwaKckrj89s6enJ61atUJRFMaPH4/dbueVV17B4XCg1+vx8PBg6NChLFiwgMDAQMLCwrRTUdtsNgDc3NyYMWMGrVq1IiIiAr1ej7u7O0FBQdoR9YMHD8bd3Z2WLVvi4+ODh4cHtbW1WK1WPD09tTdeQDtVtLe3NwEBAQwYMIB9+/bxww8/MGLECAIDA6moqMDHxwedToe/vz/NmzfH29sbk8mEoijaHABYrVbtsRVFwc3NTRujXq/Hzc2NoKAgYmJiePLJJ+nWrRulpaWYTCbWrFnDnXfeiU6nazDPpaWl+Pj4EBQUhLe3NzqdDr1ej6enJ/Hx8cyfP5+WLVsSEhKCTqfT5svpdFJTU4PRaCQqKooxY8agKArh4eF4e3trcwpgNBrZvHkz69at44477qCsrAwvLy/8/PwICAigefPmvPDCC3z66aesW7cOd3d3WrRogbe3N3V1ddppiwcPHszmzZvZu3cv8fHxHDp0iNOnTzNs2DDKysrw8fEhMDBQewMLDg7G398fo9GIxWLBw8OD0NBQvLy8qKurw8fHB6vVipubm/Z8GY1GAgICtHABCA8PJygoiA4dOmjRWs9sNuPu7o7BYCAwMBCdTqfNwfmnj+7WrRvHjx9nzZo1jB49Wru/m5ubdjpop9OJm5sb/v7+2nZx/nMNaKdxrl/foKAgvLy8iI6O5t5772XSpEmkp6drj+/r60twcLC2Tel0OsLCwvD09MRqtdKtWzeOHj3K2rVrGTVqVIN9p7i4GC8vL21ez3f+tupwOIiNjWXu3LncdNNNeHh4oNPp8PT0pEWLFri5uTFx4kS2b9/O9OnTf3IaarPZjI+PD/7+/vj5+bFhwwaSk5MZNWoUAG3atMHLywudToeiKNr8eHt7U1NTg5+fHz4+Ptp+0r59e+rq6li2bBmjR4/WvrGRk5PD4MGDtbmsn/PY2FgOHz7Mhg0buP3223n66acxmUxMnDiRU6dONdhWAXx8fAgICMDHx4fq6mr0ej1t27bF29tbe10C6Nu3r7a/Dx8+nPLycnx8fAgJCdG+LTZ48GBefvllCgoKCAwM1J7P+tPW6/V6JkyYwO7du5k2bRpDhgxhyZIl2Gw2wsPDG7zuKIqCEEKIxietK60rrSutW09aV1pXCCGaGmldaV1pXWndetK60rpCCNGUSOdK50rnSufWk86VznUl+VXj4ooYMmQIn376KYGBgZjNZnQ6HUajEafTyYYNG3A4HKiqiru7OytWrCAvLw8/Pz9CQkIwGo0AWvDA2ReRiIgIPvzwQ44cOUKvXr3YsmUL1dXVKIqiPT7AoEGDePPNN5k8eTJeXl60adOGqVOnsm3bNh599FHsdjtubm6UlJSQl5dH586d+eabb4iMjGTkyJG8/PLLLFq0iJqaGjw9PbWxBAUFERQUxEcffURKSgp/+MMftOtiYmJ466238PHx0b41UlpaSmhoKO+++y5TpkxhyZIlZGdna+P08PDA3d0dd3d3EhISyMrK0pZxvubNm1NeXs769eu1+7Rr147S0lKmTZtGXl4ebdu2JS0tjfbt29OiRYufzPOwYcOYM2cO4eHhVFZWoigKRqMRRVG49dZbeeedd5g6dSq+vr6EhIQwdepUvv/+e55//nlGjx5NSkoKYWFhWlC6ublpj1Gv/s3W6XSyf/9++vfvz6RJkyguLiYnJ4eKigq2bNmCu7s7cPbN7JNPPsHpdBIfH69FRFhYGB4eHtqb3Jw5cwgMDOSbb77h1ltv5bPPPmPHjh2UlpY2eN4NBgN6vR6Hw8H06dOpq6vjtttuY9GiRYwdO5adO3eSlZVFmzZtePvtt/H29ubpp5/G09NTm9f6x6l/furfJFq3bo3dbue9997Dz88Pd3f3i86Bt7c3Xbt2JTU1VXtzd3d3p2/fvsyaNYudO3dSV1fHzp07CQwM5JFHHmHJkiXanMbFxTFjxgwKCwuJjIwkPj6ezz//nNatW1NdXU1ubi4HDhzQll3Py8sLRVFwd3dHVVXc3NyYM2cOISEh9OjRg+D/n717D4+yvvP//7rnlJlMzskkIETOFbRykAAVtMqqSKtuvbz8cv2uVrdut2u33Vp33dXV/lEPiNAiKlh3Ww8FQVEEURCRg4AiCMhJkYPKIYEEEnI+zySZmfv3h8l9EYU6gZBJbp6P6+JyZjKHz8w9k3nK9b5vAgFdcsklOnDggPr3769Vq1ZZn53x48frkUceUUVFhQ4dOmRth1OfW9vzmDRpku644w499dRTGjhwoCoqKvTMM89o/fr1ysvL05o1a2SaZrtokSS3262xY8fqiSeeUFpamnJzcyV9HRWffvqpMjIyrNfd5/Np27Zt1uuzePFiXXfddfrTn/6k3r17684771Rubq48Ho/Gjh2r+fPn6w9/+IP27Nkj0zTV1NSkvXv3avTo0Xrqqaf01VdfqaamRqmpqRo0aJCOHDmi3NxcrVy5Ug0NDZKkCRMmaOrUqdZ71eFwqLy8XE8//bQOHDige+65R8uXL5fD4Wj3npOkjIwM6/Pep08fTZw4UXPmzFFiYqLC4bAOHDigQ4cOyel0trvtqe+5SCSitWvXWq9dXl6eZs6cqTvuuMP6H6qnnnpKn376qa655poz/NYFAHQlWpfWpXVp3Ta0Lq0LAHZD69K6tC6t24bWpXUBwE7oXDqXzqVz29C5dO75ZHzzDYfzKy8vz2w7XKudhMNhHT9+3NoTJCsrSxUVFQoEAjp58qQaGxvVu3dvhcNhBYNBNTQ0KCcnR263W9XV1daXdTQa1cMPP6z777/fum1ycrLcbrei0aiqq6utvSCqqqqUlZWlYDCo3/zmN5o9e7ZSU1PV0NCg0tJS+f1+maap//qv/9KDDz6oLVu2KBqN6pe//KWKioqUkZEhn8+nkydPqnfv3mppaVF9fb0yMjKsQ4iHQiGVlZUpOTlZCQkJ1mF9m5qaVFxcbE3319XVKRwOKy0tTaWlpcrOzlZ9fb0Mw1AwGFQgELDOR6NRhUIhNTQ0KBAIaPv27dq4caP+8Ic/yDAMmaapsrIymaYpr9crl8ulxMRE1dbWqqKiQllZWUpOTra+iJKTk2WaZrvX2ePx6MSJE9YXXiAQUHl5ubWu3/72t3ruuees6fiKigolJibK7/fL6/WqqKhI0WhUvXr1UlNTkxISEuTxeFReXq4TJ05owYIFuuiii9SnTx8NGzZMs2bN0vPPP6/q6mpFIhG5XC5lZGSouLhYhmGoT58+qqysVDQaVVNTk3JycrRq1SoVFBTod7/7naqrq629BoqLi629hXJycnTixAnrSyAzM9N6v1RXV8vr9aqurs76ArvoootUWVmpjIwMNTU1KRwOy+PxqKSkRKmpqUpPT5dhGNZrl5iYqJqaGqWlpam2tlZ+v9/a26PtfRQIBBQOh+Xz+eR2u1VeXq7CwkK9/vrrmjlzphobG9XY2KisrCzV1tbK5XLJ5/OpuLhYTqdThmHI4/HI4/EoISFBVVVVcjqdVnwUFxcrMTFRbrdbKSkpOn78uNxut7W3UXFxsRISEuT1enX//fdrxowZikajCgQC1p43LS0tCofD1vZPSEhQfX29QqGQMjMzVVVVZX12UlJSVFJSonA4LLfbraysLLlcLkWjUZWXl7d7ryYmJqqkpETZ2dlyOp2qqqpSbW2ttcdJTU2NgsGgtbfKqZqbm1VcXCyfz6cXXnhBQ4cOVf/+/TVnzhzNmTNHpmkqNTVVZWVl1t5Mba9Penq6iouL5XK5lJOTY8XVypUrdfDgQd1zzz267777rL2lFi9erNmzZ+vkyZMyDEOGYSg7O1sNDQ1qampq9xq0fX5KSkqs92pmZqYqKioUjUZlGIZycnJUVVWl5ORkGYahyspK7d+/3/qctn3e09PTFYlEVFRUJK/XK4fDoaSkJGuvnEAgYP0ebHtvtP1eOvXz6vV6VVpaqpSUFHm9Xuu9l5ycLI/H0+6Q6heCvLw87dixg11lgB6K1qV1aV1al9aldWndM6N1gZ6N1qV1aV1al9aldWndM6N1gZ6LzqVz6Vw6l86lc+ncM/uuzmXwsovZNVw6y/bt27Vv3z797Gc/s6arv0tFRYW2bNmim2666VuHtY1Go1q3bp327t2rzMxM3XrrrVZ8dAeNjY2aP3++rr32Wg0dOrRLHrO0tFQ7d+7U5MmTO3wY4JaWFr3yyisaPny4AoGAli1bJkmaOHGiLrvsspjvr6amRgsWLNAtt9yifv36dfg5xFNzc7MWLFig0aNHa+TIkV32uB988IFOnjyp22+/3dqzqqc4cuSIVqxYIYfDoeuvv16XXHLJWR2CesOGDRo0aJByc3O1d+9erVu3TgkJCbrpppuUm5t73g5rHY/P6YWMv6ADejZa9++jdc8/Wvfc0LodR+uiI2hdoGejdf8+Wvf8o3XPDa3bcbQuOoLWBXouOvfvo3PPPzr33NC5HUfnoiMYvOxmCBcAAM6Mv6ADejZaFwCAM6N1gZ6N1gUA4MxoXaDnonMBADiz7+pcR1cuBgAAAAAAAAAAAAAAAAAAoCdj8BIAAAAAAAAAAAAAAAAAACBGDF6iS5SVlengwYPauXOn9uzZc9rrhMNhLVq0SE1NTR2+/8OHD2vjxo3tLjt27JjWrVt32uvv3r1bn376aYcfp01DQ4OWLFmiaDR6xut89tln2rVr11k/RmNjoxYvXnzaxygtLdW7774r0zTPePv9+/dr69at3/k4pmlq6dKlqqmpOeN1WlpatGjRIrW0tFiX5efnq7i42DpfU1Ojt9566++u6ZuP+84776i8vDym67eJ9XnFoqCgQBs2bPjO6+3du1fbt29XbW2tnn32WZ3ucPvr16/X0aNHz3lN37yfoqIirV271jofjUa1e/fumD4nzc3NWrRokcLhsHXZkSNHVFJScs7rXLVqVbvtDwDAhYzW7Tha9/RoXVoXAIDuhtbtOFr39GhdWhcAgO6Ezu04Ovf06Fw6Fxc2Bi/RKUzTVDQaVTAYtE6bpmmdbmxsVGVlpT777DMdOHBAwWDQuk4kErH+LFu2TMFgUE1NTdbtg8GgmpubFY1Gv3W/bT/Pz8/Xli1bFI1GFYlEFI1Gdfz4cW3atEmhUEiRSMRaZzAY1Oeff659+/bJNE01NjZat2n77+kep+35tT2fd955R83NzWpubm73Zd32GPv27dOePXu+dV+nPs6pj3/qY0QiEQWDQb3zzjtqamqyHsM0TYVCIZ08eVLvv/++ddnp7vvgwYPatWtXu9f6m88pHA4rFApp5cqVqqurO+Nr0NLSorfffluhUMjaNtXV1aqvr5dpmmpqalJlZaVWrlwpSQqFQqd9Xb65jjVr1qiiosJ635wqHA5/6/0UjUb11VdftXtekhSJRNq9jm3nT/dePPV0YWGhPv7443bvkXA4bN22bVseOHBAn332mTZt2qTm5mYNHTrUWmfbNtu8ebMKCwvPuL3bnt83n883r992P23Pvbi4WBs3blQoFLICpKSkROFwuN39nHr/zc3NampqUktLi5YtW/at7dbQ0GC9dt9cxzfv69T3fdtrHQwGtWHDBp08ebLd/cQarQAA9DS0Lq1L69K6tC4AwK5oXVqX1qV1aV0AgB3RuXQunUvn0rnoCs5HHnkk3mu4oDz//POP3H333fFeRqd788039eKLL1q/JA8dOqSGhgalpaXp2Wef1cUXX6y9e/cqGo1q9erV+uCDD1RaWqpAIKDZs2fr5Zdf1oABA/Tee+/p8OHDev311zVy5Eh98cUXevHFF/Xaa6+publZq1at0hVXXKEdO3Zoz549+vzzz/W3v/1NW7ZsUXZ2turq6jR37lytXLlSQ4YM0aJFi3TgwAF9/PHHGjdunObNm6fXXntNW7du1bBhw3T06FG98cYbCoVCKi8v1/PPP6833nhDTU1NqqioUO/evTV79mw1Nzdr1qxZWr16tQ4fPqzLLrtML730ko4dO6Zly5YpLy9Pfr9f0WhUc+fO1cKFC7V161b1799fH3zwgbXmHTt2aN26dXrllVdUXl6u4uJivfbaa6qrq1NdXZ2mT5+uNWvW6Msvv9Tw4cOtx3j77bc1evRobd++Xc8++6w+/vhjORwOFRYWqnfv3mpoaNCrr76q/Px8zZ8/X5s3b1ZOTo6WLVumrVu36tChQ5KkTz/9VIMHD9acOXPUp08fzZgxQ2vXrtXevXs1adIkzZs3TwsWLFAwGNSaNWs0duxYrVmzRsePH9f777+v/Px8LVq0SHl5eSosLFRdXZ3Kysr05JNPWpF4+eWXa/bs2fryyy81cuRIuVwuSV9/sT377LMaMmSIjh8/rhUrVujYsWP6/PPPtWLFCnm9Xg0YMECGYaikpERPPPGEVq1aJa/XqzfffFP9+vXTq6++Kp/Pp+XLl1vPa8SIEZozZ47effddvf3227r88sv1zDPPaMWKFfL7/Vq2bJl69eql119/XcePH1d+fr4GDhyo2bNnKzk5WUuXLrX2Qhk1apSeffZZffTRR8rNzdXy5cv16quvauvWrbr44ov14Ycfav/+/bryyiuVmZmplpYWPfnkk1q+fLm2b9+u4cOHa9WqVRo7dqzefvttlZSUaNGiRZo/f76SkpI0cOBAlZeX63//9381YMAALViwQLt371ZWVpZaWlo0d+5cNTQ0aMuWLVq3bp3q6+uVlpamV199VXv27NHWrVt11VVXafXq1QoEApo7d64GDBigV155RaNGjZLD4dAXX3yhmTNnav369Ro6dKjeeOMNa7uNHTtWBQUFys/P14cffqi8vDy99tprKi4u1sqVK5WTk6OlS5dq5MiRcjgceu+99/Tcc89pxYoVqqys1NChQzVjxgytXLlSu3bt0ogRI7RmzRrrflwulwKBQDx/FcEGnn/+ed19992PxnsdAM4OrUvr0rq0Lq0LnBmtC/RstC6tS+vSurQucGa0LtBz0bl0Lp1L59K5wJl9V+dyxEt0ivz8fF1++eV69NFHtXLlSvXr10+LFy/W559/rsbGRjU2NurgwYOSpJEjR2ratGnasGGDAoGA7rjjDiUnJ2vAgAFyu93613/9V91www1av3693nnnHd1xxx0aMGCABgwYoGAwqN27d2v58uXKysrSqlWr9Nhjj+mGG26QJE2aNEmXXnqpRowYIbfbrdzcXD388MNqaGjQ5s2btXPnTk2fPl1jxoyRaZravHmzrrjiCk2YMEFXXnmlrrrqKg0ZMkTDhw/XkiVL9MUXX6isrEw1NTVKTU3VjBkz9Mknn6ihoUFJSUn6z//8T+Xl5em9996TJFVXV2vbtm164oknNG7cOHk8nnZrHjRokH7xi18oISFBY8aM0ccff6zLL79c11xzjcrKyuT3+zVjxgzt3r1bdXV18vv9uvfee3XllVdq+fLlWrJkiR588EHdfvvtMgxDOTk5evfdd7V+/XqlpqbqtttuU9++fZWXlyeHw6FLLrlE06ZN0yeffKKsrCwtW7ZMBQUFOnjwoPbs2aMBAwbokUceUUZGhpKTk/XLX/5Sbrdb48ePV1FRkb788kutWLFCubm5SkhI0K9//WuNHz9eH330kU6cOKHjx49r0aJFuvfee/Xzn/9chmFo37598ng8uvXWW+V2u633iGEYSk5O1rp167Rq1SplZ2fLMAzdfPPN+v3vf6+FCxdae228+eabuvLKKzVjxgyNHj1ahmHot7/9rUaOHCm3293ueX311VcY15xfAAAgAElEQVQqLS3VPffcI0nasWOHevXqpZkzZ2rkyJEaM2aM7rnnHjU3N1tBkZ+fryNHjsjv96tfv3569NFHVV1drZ07d2r//v265ZZblJSUpM2bN2vatGkaP3683G63fvjDH+qWW27RoEGDJH192OuqqipNnz5dgwcPVmpqqr766ivl5+dr1apVuvTSS63X9Pvf/74kKTMzU263W7/5zW80YsQI9evXT8uWLdPGjRuVmJgoh8Oha665Ro899piWL1+uYDCovn37aurUqSoqKlJpaan27t0rv99v3c/w4cOtQJw7d67uuOMOPfLII0pLS1NCQoL+/d//XWPHjtXHH3+soqIiNTc3a/fu3SosLNS6deuUl5en8vJy/fd//7fGjRsnh+Prr4aioiINHDhQ06ZN0/vvv69PP/1Upmlq2rRpys3NVWZmZrv76d279/n+VQMAQFzQurQurUvr0roAALuidWldWpfWpXUBAHZE59K5dC6dS+eiKzB4iU5hGIZyc3Pl8/kUDoc1ZMgQlZaWaunSpbrllltkGIZ13bbrRSIRhcNhvfDCC/qnf/on+f1++f1+BQIB+f1+hUIhJSQk6IUXXlBiYqIuvfRSXX/99Vq8eLHq6uo0ZMgQ6zo5OTkyDENFRUXasmWLpkyZIsMwlJWVJa/XK7fbrerqaoXDYXk8HuXk5MjhcOiBBx5QYWGhpk6dqoqKCi1dulS/+MUvNHDgQAWDQS1atMhaf9++feXz+WQYhiKRiFJSUpSUlCSfz6eGhgZJUlNTk/UYvXr1kmEY7dY8bNgwvffeexowYICGDRum++67TxUVFXr44YcViUTaPUY0GlVKSoqSk5OVmJio2tpa1dXVyev1WusfP368tm7dqi1btui6667TgQMHdPToUU2ePPlba87IyFBSUpIWLFigSZMmqa6uTgkJCfL7/UpNTZVpmnrttdd07bXXqm/fvpo4caJeffVVJSYmqm/fvkpKSlJmZqYSExMVCoUkfb0XSE1NjXw+nwKBgFwul2688UaNGTNGDzzwgEpLS9u9R6699lqtXbtW+/fv14QJE+R0OpWdnS2v16tQKGQd6rm2tlYpKSnyer3y+/3KyspSSUmJUlJSJKnd83I4HDpy5Iief/55TZkyRQ0NDUpOTpbH41FSUpLS09NVUVGh5ORk9erVSwkJCXrllVc0efJkOZ1OBQIBeTweuVwuJSUl6f7779cLL7ygZcuWqaWlpd37y+FwyOl0Wl/sDQ0NcjgcSkhIUCAQkNPp1IQJEzR//nxlZ2crEAhowYIF+tGPfqTs7GzrdQgEAtbzGTt2rHbv3q0PP/xQN954oxWkCQkJamlpUSQSUe/evZWYmCiXy2Udrvub99Omvr7ees8kJCQoJSVFGRkZ7bab2+3WmDFjNG/ePA0ePFgZGRnKzMxUaWmpkpOTT/t5jUajqq2tlcvlktfrtQLs1PtJS0vr3F8sAAB0E7QurUvr0rq0LgDArmhdWpfWpXVpXQCAHdG5dC6dS+fSuegKDF6iUyQkJMjtdsswDCUmJsrr9WrcuHE6ePCghg4d2u56Ho9HkuT3+7V//359/vnn2rp1q44dOya/3y/p61+sHo9H4XBY0WhU5eXl+vLLLzVixAgdPnxYo0aNUnp6ugYOHKiZM2fqlVdekcfj0auvviqXy6WlS5fKNE1t2bJFM2fOVGFhoa699lp5vV7NmjVLy5cvl8vl0urVq9XQ0CCXy6Xly5erpaVFb7/9tpqbm3Xttddq9+7d1t4nCQkJ1vNzOp0qKirSrFmz9NZbb2nixImSpEAgoOTkZOtyj8fTbs0tLS1auHCh6uvrtXHjRq1Zs0Z1dXVyOp3WY0iy9hw4ceKEZs2apcWLF2vy5MkaO3asZs6cqb/+9a/WYZHbvkCysrI0b948ud1uLV++XE6n81trnjx5sjZs2KArr7xS48eP1/vvv6+nnnpKR44cUWVlpd59910VFhZq9+7dGj9+vLZt26arr75aTqdTfr9fhmHI4/FY27Bt74ZZs2bpz3/+s6SvDwd+8OBBuVwu6wu+zcUXXyxJ6tWrl1JSUuRwOPSXv/xFTzzxhH74wx9aez3ceOONmjt3rmbMmKHly5frs88+05w5czRv3jwZhtHueUUiEUWjUUnSzp07NWbMGL333nv605/+pPfee0/z5s3T//3f/2nbtm0qKyvTjTfeqI0bN+oHP/iBXC6XNm3apJkzZ6qkpESBQEDr1q2TYRjKzs5Wenq6nnzySb355pvW82577pI0ZMgQnThxQk899ZQ2b94sl8uliRMn6oMPPtDEiRN18uRJrV27VocPH9bevXslScXFxdqxY4eee+45vfzyy0pOTlZubq7C4bB69+4tj8ejl19+WdOmTdNll12m1NRUeb3edu+L091PW9BMnjxZTz75pJ544gkdO3ZMiYmJ39puknTDDTdo9erVuu6663To0CGVlJTo8ccf17x586zX0+PxWHv9JCYmavjw4Tpw4ICeeuop7dy5U06ns939nBo8AADYCa1L69K6tC6tCwCwK1qX1qV1aV1aFwBgR3QunUvn0rl0LrqC0Tahja6Rl5dn7tixI97L6HS1tbXWF29lZaUyMzPV1NSk+vp6paam6q233lJFRYXuvPNOGYYhn8+nyspK+f1+lZWVSZKysrLU2NiojIwMhUIhBYNB3Xfffbr33nt18OBBFRQU6IEHHlBFRYX8fr98Pp8aGxtVXl4uv99vTdPX19fL7XYrPT1dDQ0NCoVC1p4X9fX1qqqqkt/vt/ZSaGhoUFZWlpqbm1VTUyOn06nevXsrHA6rtrZWWVlZCgaDikQiSkpKUkVFhVJTU609UNxutzIzM2UYhkzTVENDg/Xc2vbIaFtzQkKCiouLFQ6HlZycLEmqq6tTVlaWHA6HWlpalJyc3O4xIpGIXC6XMjMz1dzcrJMnT8rv98vhcCgtLU11dXUyTVMpKSkqKytTMBi09hQ4dc0ZGRmKRCKqrKy09l4oKyuznkNycrLKysoUjUaVnp5unU9LS5PL5bK2a2Njo4LBoF588UWNGTNGP/zhD1VSUmLtweHz+axtkpGR0e7LrG0PE6fTqaSkJFVVVSkajSoUCqlXr15WuJimqbKyMrW0tCg1NVXhcFipqamqqKiQ1+uVaZrW8/rkk0+0c+dO3X777frTn/6kxx9/XF6vV8FgUIFAwNqGtbW1SkhIkNPptF6DtvdoKBRSamqqEhMTVVJSIunruAoGg+22Zds2TkpKstZZXV2thoYGeb1ea0+V0tJSZWRkSJJKSkoUjUatw6GHQiHr8dq2S2Njo/Uca2trFQ6H1djYqJycHJmmqWAwqNTUVFVWVqqlpUUPPfSQpk+fLq/X2+5+HA6HIpGISktL5XA4lJWVpaqqqnbb7S9/+YuuvvpqXX311SotLVVWVpaampqs90plZaV1X21R7fV6re1fWVmpYDAor9erlJQUuVwu637ath9wLvLy8rRjxw4qGOihaF1al9aldWld4MxoXaBno3VpXVqX1qV1gTOjdYGei86lc+lcOpfOBc7suzqXwcsuZtdw+Xuqq6v12muv6ZZbblHfvn1jvl3bHh87duxQSkqKfvKTnyg9Pf08rhSxOnbsmFauXKmf/vSn7Q4THQ81NTVaunSp6uvrdcUVV+jKK6/81p4qdrJhwwZVV1frJz/5SYefZ0FBgVavXq2f/exnVnwB3Q1/QQf0bLQurWsHtG780LqwO1oX6NloXVrXDmjd+KF1YXe0LtBz0bl0rh3QufFD58LuGLzsZi7EcAEAIFb8BR3Qs9G6AACcGa0L9Gy0LgAAZ0brAj0XnQsAwJl9V+fad6waAAAAAAAAAAAAAAAAAACgkzF4CQAAAAAAAAAAAAAAAAAAECMGLwEAAAAAAAAAAAAAAAAAAGLE4CUAAAAAAAAAAAAAAAAAAECMGLwEAAAAAAAAAAAAAAAAAACIkSveC0DPFw6HdfjwYUUikXgvBQAuGIZhqH///vL5fPFeCgDYGq0LAF2P1gWArkHrAkDXo3UB4PyjcwGg612oncvgJc5ZRUWFnnzySU2YMCHeS0EnOXr0qCoqKnTFFVfEeynoJDt37lQgENDFF18c76Wgk+zevVt33XWXRo0aFe+lAICt0br2Q+vaD61rP7QuAHQNWtd+aF37oXXth9YFgPOPzrUfOtd+6Fz7uVA7l8FLnDPTNDV06FDddddd8V4KOsn27duVn5+vKVOmxHsp6CQ+n0+DBw/W6NGj470UdBKfz6doNBrvZQCA7dG69kPr2g+taz+0LgB0DVrXfmhd+6F17YfWBYDzj861HzrXfuhc+7lQO5fBS3Q60zRVVlamhoYGSV8fTjY7O1uJiYnWz9su/+btTnc5uofm5mbV19crIyNDLS0tqq2tVUZGBturBzNNU01NTTp58qQMw1Dv3r11/Phx1dTUaMSIEfFeHgAA3RKta0+0rv3QugAAdByta0+0rv3QugAAdAyda090rv3QueiJHPFeAOxp586dWrhwoX71q19p5cqVKisrk2maikQiKiws1EsvvSTTNK0/kUhEH3zwgT788EMrYNC9HDx4UM8884wkqaioSNOnT4/zinCuTp48qXvvvVcLFy7UokWL9O6772rfvn368MMPFQ6H+SwCAHAGtK790Lr2Q+sCAHB2aF37oXXth9YFAKDj6Fz7oXPth85FT8QRL9HpDMPQj370Iw0dOlSFhYX69a9/rYKCAv3hD39QJBJRVlaWlixZorS0NKWlpWnjxo1KSUnRl19+qerqavl8Po0bNy7eTwPfEIlEVFtbq7q6OtXV1amxsTHeS8I5ME1TL730km688UbdeuutMk1T0WhUa9as0bZt25Sfn6/LLrtMv/jFL+RwMKMPAEAbWteeaF17oXUBADg7tK490br2QusCANBxdK490bn2Queip2LwEl2ivLxc+/fv1wsvvKCCggIdPnxYP/7xj/XSSy/J6XTq3/7t3/T6669LkkaNGhXn1eJMNmzYoF/96leqr69XVlZWvJeDc5Sfn68777xT69ev19q1a9WvXz/169dP6enp+v3vf6//+I//0JQpU5SSkhLvpQIA0K3RuvZA69oLrQsAQOegde2B1rUXWhcAgHNH59oDnWsvdC56IsaA0WUuvfRSpaeny+v1yuPxyOfzyTAMjRo1SklJSUpISJDP55PH44n3UnEG119/vebNm6c//vGP8vl88V4OzlGvXr30+eef69prr9Vdd92lffv2SZK+973vKT09XQ6HQ+FwOM6rBACgZ6B1ez5a115oXQAAOg+t2/PRuvZC6wIA0Dno3J6PzrUXOhc9EUe8xHljGIbcbrd12uVyyTAMpaenq6KiQh999JGcTqecTqckqV+/flq8eLFGjx6toUOHxnPpOA2HwyGPx2P9cbn49dGTGYahn//853rooYd09OhRVVZWKjk5WQ6Hw/pMut1uGYYR55UCANA90br2QuvaC60LAMC5oXXthda1F1oXAICzR+faC51rL3Queip+8+C8ueiii/TAAw9I+npvkT59+kj6ekr9sccekyQNGzbM2kNk/PjxCgQCyszMjM+C8XcNGjRI99xzjySpb9++uv/+++O8IpyrwYMH64UXXlBhYaEcDof69++vaDSqvLw8OZ1OPfzww0pOTo73MgEA6JZoXXuhde2H1gUA4OzRuvZC69oPrQsAwNmhc+2FzrUfOhc9EYOX6DTRaLTdeZfLpT59+sg0TXm9Xnm9Xus6F1988bdu63A4dMkll5z2vtC1TNOU1H47JCQkqFevXopGo3K73broootkmqZ1XXRvbdvqm5+t1NRUpaamtrssKSlJpmkqNzdXEp/H7orPHgB0LVrXPmhd+6F17YfPHgB0LVrXPmhd+6F17YfPHgB0HTrXPuhc+6Fz7edC/ewxeIlOsXnzZtXW1sZ7GegkJ06cUHV1tfbt2xfvpaCT7Nu3TxkZGerdu3e8l4JO8sUXX1h75QEAzi9a115oXfuhde2H1gWArkPr2gutaz+0rv3QugDQNehce6Fz7YfOtZ8LtXMZvESnGDdunH73u9/FexnoJLt27VJBQYFuu+22eC8FnWTJkiUaNGiQRo0aFe+loJO8+eab8V4CAFwwaF17oXXth9a1H1oXALoOrWsvtK790Lr2Q+sCQNegc+2FzrUfOtd+LtTOZfASncLlcsnn87W77JuHkTVNU/X19UpOTpZhGF25PHSQx+OR2+22tump29IwDOs827Hn8Hg8SkhIaPc5PXU7sk17HrfbHe8lAMAFg9a1F1rXfmhd+6F1AaDr0Lr2QuvaD61rP7QuAHQNOtde6Fz7oXPt50LtXEe8FwB7Mk1T+/bt09SpU/X4449r4cKFqqmp0UMPPaRwOBzv5eEszJ8/XydOnJD09aG8Fy1a9K04Rc+yY8cObdy4UdLXh/JevXp1nFcEAEDPQOvaD61rP7QuAABnh9a1H1rXfmhdAAA6js61HzrXfuhc9EQMXuK8KCsr07Rp03Trrbfqd7/7nYYPH65IJKKKigpt375dmzZtUiQSifcy0QFNTU1as2aNTNPUunXr2H42cPToUR08eFCSdPz4ce3bt09Hjx5VKBRSOBzWkSNHiFMAAE6D1rUfWtd+aF0AAM4OrWs/tK790LoAAHQcnWs/dK790LnoiRi8xHnxySefaPTo0erfv7+2bdumyspKGYahgoIC7d27V3PnztWePXvivUzEyDAMTZ48WVu2bFFTU5O2bduma665hsM628CaNWv05JNPasmSJTJNU0uXLtWmTZu0d+9e/e1vf4v38gAA6JZoXXuhde2L1gUAoONoXXuhde2L1gUAoGPoXHuhc+2LzkVPw+AlzgvDMGSapgzDkNPp1NNPP62qqioNGDBAd911l8aNG6f8/Px4LxMd0KdPH7ndbm3dulXJycm66KKL4r0kdIK+fftqxIgRGjRokAzD0KRJk7Rq1SqtW7dOkyZNIk4BADgNWtd+aF17onUBAOg4Wtd+aF17onUBAOgYOtd+6Fx7onPR0zB4ifNi9OjR2rRpk/bv36/LL79cHo9HpmnK4XDwi7CHcjgcuvrqqzV9+nRNmDBBDge/Puzg0ksv1Q033KBRo0ZJkgYPHqyTJ09q9+7duuKKK+K8OgAAuida135oXXuidQEA6Dha135oXXuidQEA6Bg6137oXHuic9HTuOK9ANhTTk6Opk6dqnfeeUemaeqGG25Qdna2rrvuOjkcDg0bNkxJSUnxXiY6wDAMXX/99Tpw4IDGjx8f7+WgEwwcOFCNjY2SpNzcXDmdTnk8Ht1xxx2qrKyU3++P8woBAOieaF37oXXth9YFAODs0Lr2Q+vaD60LAEDH0bn2Q+faD52LnojBS5wXhmFo+PDhuvzyy9td/s///M8yDENXXXVVnFaGc5GVlaVHHnkk3stAJ2nbS0SShg0bpmHDhlmH65bE3l0AAJwBrWtPtK690LoAAJwdWteeaF17oXUBAOg4Otee6Fx7oXPREzF4iU5x7NgxbdiwId7LQCf58ssvVVJSwja1kX379qm6ulq1tbXxXgo6yYEDBzR48OB4LwMALgi0rr3QuvZD69oPrQsAXYfWtRda135oXfuhdQGga9C59kLn2g+daz8XaucyeIlOEQ6HrUP+oucLhUJqampim9pIc3OzQqEQ29RGmpub470EALhg0Lr2QuvaD61rP7QuAHQdWtdeaF37oXXth9YFgK5B59oLnWs/dK79XKidy+AlOsXAgQN10003xXsZ6CTbt29Xfn4+29RG6uvrNXjwYI0ePTreS0Enqa+vj/cSAOCCQevaC61rP7Su/dC6ANB1aF17oXXth9a1H1oXALoGnWsvdK790Ln2c6F2riPeC4A9hcNhHTlyRKZpKhKJ6PDhw4pGo/FeFs5BY2Ojdu7cqV27dqm2tlbhcFgLFy5UU1OTdZ2CggIVFhZqzZo1OnbsWBxXi1i8//77ys/Pj/cyAADocWhd+6F17YfWBQDg7NC69kPr2g+tCwBAx9G59kPn2g+di56IwUucF7W1tZo6daoikYgaGxv16KOPqqWlRaZpyjRNRaNRmaYZ72WiAw4fPqzp06fr008/1X333afGxkatWLFCwWBQwWBQpmmqoaFBDQ0N2rx5s44fP66Ghga2cze2ZcsWFRUVWdvJNE01NzersbFRkUiEbQcAwBnQuvZD69oPrQsAwNmhde2H1rUfWhcAgI6jc+2HzrUfOhc9EYOXOC9M01RjY6OKi4tVUlKiUCiklStXatOmTQqFQpo5c2a7PQ3Q/ZmmqezsbF1zzTUKh8OKRqOqqqrSH//4R/36179WQUGBKioqdOTIEUWjUc2fP1//8z//oyVLlvAF2E2ZpqlXXnlF9957r95++22Vl5fr8ccf14MPPqiHH35YLS0t8V4iAADdEq1rP7Su/dC6AACcHVrXfmhd+6F1AQDoODrXfuhc+6Fz0RO54r0A2NeRI0f08MMPKxwOq6KiQoMHD9ZLL72kxMRE1dbWKiEhId5LRAdt27ZN06ZNk2EYCoVC8ng8+tWvfqUtW7Zow4YNSklJUXV1tSTphhtu0MSJE3XPPffo5ptvls/ni/PqcTrXXXedfvCDH+ixxx6T1+tVnz59NGnSJG3atElutzveywMAoNuide2H1rUfWhcAgLND69oPrWs/tC4AAB1H59oPnWs/dC56Go54ifNm6NCh+utf/6o///nPysnJ0cCBA1VfX6833nhD//iP/yjDMOK9RHTQP/zDP+jFF19Ubm6udu3aJb/fr6ysLCUmJioUClnXczgcysrKktvtVktLi6LRaBxXjTMxDEMXXXSRfD6fWlpa5PF49NFHH2ndunW67bbb+IwCAPB30Lr2Q+vaC60LAMDZo3Xth9a1F1oXAICzQ+faD51rL3QueiIGL3FeGIahpKQkORwOORwOJSUlye1265prrtGBAwf0/e9/P95LRAe5XC4dPHhQTz/9tE6cOKFhw4YpKSlJhmHI7XbL6/Va1/V4PJo3b54ef/xxjRo1ir1Fuimfzye32219XqPRqCKRiJqbm7Vp0yZFIpF4LxEAgG6J1rUfWtd+aF0AAM4OrWs/tK790LoAAHQcnWs/dK790LnoifinxnFepKWladq0aXI4HEpMTNSMGTPkdrs1ZcoU/fjHP1ZiYmK8l4gOGjJkiJ577jlJUkZGhrxer2bMmCGfz6eJEyeqsbFR8+bN07BhwzRlyhRFIhEFg0EFAgE5HMx4d0d33323EhIS5HK5NHXqVP3tb3/TzTffrKFDh2rOnDn66U9/KqfTGe9lAgDQ7dC69kPr2g+tCwDA2aF17YfWtR9aFwCAjqNz7YfOtR86Fz0Rg5foFNFoVM3Nze0uS0pKUktLS7vThmEoOTnZuhzdUzgctvYcOFUgELBOt7S0KCkpSeFwWE6nU/X19fJ6vRo7dqy194jf75dpmt+6H3S9cDiscDjcblu0badIJKKkpCTdfvvtevfdd7Vlyxbdf//9cjgcbLtujD16AKDr0Lr2QuvaD61rP7QuAHQdWtdeaF37oXXth9YFgK5B59oLnWs/dK79XKida5imGe81XFDy8vLMHTt2xHsZnaqqqkqPPvqoUlJS4r0UdJL6+no1NTUpMzMz3ktBJ6moqJDX65Xf74/3UtBJqqur9dvf/lbf+9734r2UTpWXl6cdO3YY8V4HgLND66InoHXth9a1H1oXQHdE66InoHXth9a1H1oXQHdD56InoHPth861nwu1czniJc5ZWlqaZs2aFe9lAMAFh8PgA8D5R+sCQHzQugBw/tG6ABAftC4AnF90LgDEx4XYuQxefoNhGAWS6iRFJIVN08wzDCND0iJJ/SUVSJpimmaVYRiGpNmSfiypUdJdpmnuise648kwDDmdzngvAwAAAN+B1u04WhcAAKD7o3PPDq0LAADQ/dG6HUfnAgC6yoU3ahqbiaZpjjRNM6/1/IOS1pmmOUTSutbzkvQjSUNa/9wt6f+6fKUAAABAx9C6AAAAsCM6FwAAAHZF6wIA0A0xeBmbn0h6ufX0y5JuPeXy+ebXtkpKMwyjdzwWCAAAAJwlWhcAAAB2ROcCAADArmhdAAC6AQYvv82UtMYwjJ2GYdzdelmOaZrFradLJOW0nu4jqfCU2xa1XtaOYRh3G4axwzCMHWVlZedr3QAAAMB3oXUBAABgR53euRKtCwAAgG6Bv9MFAKCbcsV7Ad3QVaZpHjcMI1vSWsMwvjj1h6ZpmoZhmB25Q9M0n5f0vCTl5eV16LYAAABAJ6J1AQAAYEed3rmtt6N1AQAAEG/8nS4AAN0UR7z8BtM0j7f+t1TSW5LGSjrZdgju1v+Wtl79uKTcU27et/UyAAAAoNuhdQEAAGBHdC4AAADsitYFAKD7YvDyFIZh+A3DSG47LWmSpL2Slkv6eevVfi5pWevp5ZL+yfjaDyTVnHJIbwAAAKDboHUBAABgR3QuAAAA7IrWBQCge+OfGm8vR9JbhmFIX782C03TXGUYxnZJbxiG8S+Sjkqa0nr9lZJ+LOmQpEZJ/9z1SwYAAABiQusCAADAjuhcAAAA2BWtCwBAN8bg5SlM0zwiacRpLq+QdN1pLjcl/XsXLA0AAAA4J7QuAAAA7IjOBQAAgF3RugAAdG/8U+MAAAAAAAAAAAAAAAAAAAAxYvASAAAAAAAAAAAAAAAAAAAgRgxeAgAAAAAAAAAAAAAAAAAAxIjBSwAAAAAAAAAAAAAAAAAAgBgxeAkAAAAAAAAAAAAAAAAAABAjBi8BAAAAAAAAAAAAAAAAAABixOAlAAAAAAAAAAAAAAAAAABAjBi8BAAAAAAAAAAAAAAAAAAAiBGDlwAAAAAAAAAAAAAAAAAAADFi8BIAAAAAAAAAAAAAAAAAACBGDF4CAAAAAAAAAAAAAAAAALc43IAAACAASURBVADEiMFLAAAAAAAAAAAAAAAAAACAGDF4CQAAAAAAAAAAAAAAAAAAECMGLwEAAAAAAAAAAAAAAAAAAGLE4CUAAAAAAAAAAAAAAAAAAECMGLwEAAAAAAAAAAAAAAAAAACIEYOXAAAAAAAAAAAAAAAAAAAAMWLwEgAAAAAAAAAAAAAAAAAAIEYMXgIAAAAAAAAAAAAAAAAAAMSIwUsAAAAAAAAAAAAAAAAAAIAYMXgJAAAAAAAAAAAAAAAAAAAQIwYvAQAAAAAAAAAAAAAAAAAAYsTgJQAAAAAAAAAAAAAAAAAAQIwYvAQAAAAAAAAAAAAAAAAAAIgRg5cAAAAAAAAAAAAAAAAAAAAxYvASAAAAAAAAAAAAAAAAAAAgRgxeAgAAAAAAAAAAAAAAAAAAxIjBSwAAAAAAAAAAAAAAAAAAgBgxeAkAAAAAAAAAAAAAAAAAABAjBi8BAAAAAAAAAAAAAAAAAABixOAlAAAAAAAAAAAAAAAAAABAjBi8BAAAAAAAAAAAAAAAAAAAiBGDlwAAAAAAAAAAAAAAAAAAADFi8BIAAAAAAAAAAAAAAAAAACBGDF4CAAAAAAAAAAAAAAAAAADEiMFLAAAAAAAAAAAAAAAAAACAGDF4CQAAAAAAAAAAAAAAAAAAECMGLwEAAAAAAAAAAAAAAAAAAGLE4CUAAAAAAAAAAAAAAAAAAECMGLwEAAAAAAAAAAAAAAAAAACIEYOXAAAAAAAAAAAAAAAAAAAAMWLwEgAAAAAAAAAAAAAAAAAAIEYMXgIAAAAAAAAAAAAAAAAAAMSIwUsAAAAAAAAAAAAAAAAAAIAYMXgJAAAAAAAAAAAAAAAAAAAQIwYvAQAAAAAAAAAAAAAAAAAAYsTgJQAAAAAAAAAAAAAAAAAAQIwYvAQAAAAAAAAAAAAAAAAAAIgRg5cAAAAAAAAAAAAAAAAAAAAxYvASAAAAAAAAAAAAAAAAAAAgRgxeAgAAAAAAAAAAAAAAAAAAxIjBSwAAAAAAAAAAAAAAAAAAgBgxeAkAAAAAAAAAAAAAAAAAABAjBi8BAAAAAAAAAAAAAAAAAABixOAlAAAAAAAAAAAAAAAAAABAjBi8BAAAAAAAAAAAAAAAAAAAiBGDlwAAAAAAAAAAAAAAAAAAADFi8BIAAAAAAAAAAAAAAAAAACBGDF4CAAAAAAAAAAAAAAAAAADEiMFLAAAAAAAAAAAAAAAAAACAGDF4CQAAAAAAAAAAAAAAAAAAECMGLwEAAAAAAAAAAAAAAAAAAGLE4CUAAAAAAAAAAAAAAAAAAECMGLwEAAAAAAAAAAAAAAAAAACIEYOXAAAAAAAAAAAAAAAAAAAAMWLwEgAAAAAAAAAAAAAAAAAAIEYMXp6GYRhOwzB2G4axovX8AMMwthmGccgwjEWGYXhaL09oPX+o9ef947luAAAA4O+hcwEAAGBXtC4AAADsitYFAKB7YvDy9O6VdOCU83+U9LRpmoMlVUn6l9bL/0VSVevlT7deDwAAAOiu6FwAAADYFa0LAAAAu6J1AQDohhi8/AbDMPpKuknSi63nDUn/IGlJ61VelnRr6+mftJ5X68+va70+AAAA0K3QuQAAALArWhcAAAB2ResCANB9MXj5bc9IekBStPV8pqRq0zTDreeLJPVpPd1HUqEktf68pvX67RiGcbdhGDsMw9hRVlZ2PtcOAAAAnEmnd65E6wIAAKBboHUBAABgV8wvAADQTTF4eQrDMG6WVGqa5s7OvF/TNJ83TTPPNM28QCDQmXcNAAAAfKfz1bkSrQsAAID4onUBAABgV8wvAADQvbnivYBuZoKkfzQM48eSvJJSJM2WlGYYhqt1r5C+ko63Xv+4pFxJRYZhuCSlSqro+mUDAAAAfxedCwAAALuidQEAAGBXtC4AAN0YR7w8hWmaD5mm2dc0zf6S/j9J603T/JmkDZJub73azyUtaz29vPW8Wn++3jRNswuXDAAAAHwnOhcAAAB2ResCAADArmhdAAC6NwYvY/M/ku4zDOOQpExJL7Ve/pKkzNbL75P0YJzWBwAAAJwNOhcAAAB2ResCAADArmhdAAC6Af6p8TMwTfMDSR+0nj4iaexprhOS9P+6dGEAAADAOaBzAQAAYFe0LgAAAOyK1gUAoPvhiJcAAAAAAAAAAAAAAAAAAAAxYvASAAAAAAAAAAAAAAAAAAAgRgxeAgAAAAAAAAAAAAAAAAAAxIjBSwAAAAAAAAAAAAAAAAAAgBgxeAkAAAAAAAAAAAAAAAAAABAjBi8BAAAAAAAAAAAAAAAAAABixOAlAAAAAAAAAAAAAAAAAABAjBi8BAAAAAAAAAAAAAAAAAAAiBGDlwAAAAAAAAAAAAAAAAAAADFi8BIAAAAAAAAAAAAAAAAAACBGDF4CAAAAAAAAAAAAAAAAAADEiMFLAAAAAAAAAAAAAAAAAACAGDF4if+fvbsLtew86wD+f5o0tqg0/RhCyUQbabDkwiYhlJSK1AQlqcX0opYWtaEE5iZChYrE3hTFgt60WpRCaGKmotYQqw1S1JAGqhdNO9rarygdgyUJaWds2vhRbIm+XpyVuufMmTnPnjNn7z3r/H5wOGu9a83hnYdZ+/w5/GcfAAAAAAAAAAAAoEnxEgAAAAAAAAAAAKBJ8RIAAAAAAAAAAACgSfESAAAAAAAAAAAAoEnxEgAAAAAAAAAAAKBJ8RIAAAAAAAAAAACgSfESAAAAAAAAAAAAoEnxEgAAAAAAAAAAAKBJ8RIAAAAAAAAAAACgSfESAAAAAAAAAAAAoEnxEgAAAAAAAAAAAKBJ8RIAAAAAAAAAAACgSfESAAAAAAAAAAAAoEnxEgAAAAAAAAAAAKBJ8RIAAAAAAAAAAACgSfESAAAAAAAAAAAAoEnxEgAAAAAAAAAAAKBJ8RIAAAAAAAAAAACgSfESAAAAAAAAAAAAoEnxEgAAAAAAAAAAAKBJ8RIAAAAAAAAAAACgSfESAAAAAAAAAAAAoEnxEgAAAAAAAAAAAKBJ8RIAAAAAAAAAAACgSfESAAAAAAAAAAAAoEnxEgAAAAAAAAAAAKBJ8RIAAAAAAAAAAACgSfESAAAAAAAAAAAAoEnxEgAAAAAAAAAAAKBJ8RIAAAAAAAAAAACgSfESAAAAAAAAAAAAoEnxEgAAAAAAAAAAAKBJ8RIAAAAAAAAAAACgSfESAAAAAAAAAAAAoEnxEgAAAAAAAAAAAKBJ8RIAAAAAAAAAAACgSfESAAAAAAAAAAAAoEnxEgAAAAAAAAAAAKBJ8RIAAAAAAAAAAACgSfESAAAAAAAAAAAAoEnxEgAAAAAAAAAAAKBJ8RIAAAAAAAAAAACgSfESAAAAAAAAAAAAoEnxEgAAAAAAAAAAAKBJ8RIAAAAAAAAAAACgSfESAAAAAAAAAAAAoEnxEgAAAAAAAAAAAKBJ8RIAAAAAAAAAAACgSfESAAAAAAAAAAAAoEnxEgAAAAAAAAAAAKBJ8RIAAAAAAAAAAACgSfESAAAAAAAAAAAAoEnxEgAAAAAAAAAAAKBJ8XJBVb2gqj5dVf9YVV+qql+f1q+sqkeq6nhV/WlVXTKtf990fny6/op17h8AAM5E1gUAYI7kXAAA5krWBYDNpnh5qu8kuXGM8eok1yS5uapuSPLbSd4/xnhlkm8muX26//Yk35zW3z/dBwAAm0jWBQBgjuRcAADmStYFgA2meLlgbPnP6fT508dIcmOS+6f1o0neNB3fOp1nun5TVdWKtgsAAG2yLgAAcyTnAgAwV7IuAGw2xcttquqiqvpckhNJHkzyL0m+NcZ4drrliSSXT8eXJ3k8SabrzyR56Wp3DAAAPbIuAABzJOcCADBXsi4AbC7Fy23GGP8zxrgmyeEkr0nyqr1+zao6UlXHqurYyZMn97xHAAA4F7IuAABztB85N5F1AQBYPz/TBYDNpXh5BmOMbyV5OMlrk1xaVRdPlw4neXI6fjLJFUkyXX9Rkm/s8LXuGmNcP8a4/tChQ/u+dwAAOBtZFwCAOTqfOXf6erIuAAAbwc90AWDzKF4uqKpDVXXpdPzCJD+V5NFsBZg3T7fdluRj0/ED03mm658YY4zV7RgAAHpkXQAA5kjOBQBgrmRdANhsF+9+y4Hy8iRHq+qibJVS7xtj/GVVfTnJR6rqN5N8Nsnd0/13J/nDqjqe5Okkb13HpgEAoEHWBQBgjuRcAADmStYFgA2meLlgjPH5JNfusP5YktfssP7fSX5uBVsDAIA9kXUBAJgjORcAgLmSdQFgs/lV4wAAAAAAAAAAAABNipcAAAAAAAAAAAAATYqXAAAAAAAAAAAAAE2KlwAAAAAAAAAAAABNipcAAAAAAAAAAAAATYqXAAAAAAAAAAAAAE2KlwAAAAAAAAAAAABNipcAAAAAAAAAAAAATYqXAAAAAAAAAAAAAE2KlwAAAAAAAAAAAABNipcAAAAAAAAAAAAATYqXAAAAAAAAAAAAAE2KlwAAAAAAAAAAAABNipcAAAAAAAAAAAAATYqXAAAAAAAAAAAAAE2KlwAAAAAAAAAAAABNipcAAAAAAAAAAAAATYqXAAAAAAAAAAAAAE2KlwAAAAAAAAAAAABNipcAAAAAAAAAAAAATYqXAAAAAAAAAAAAAE2KlwAAAAAAAAAAAABNipcAAAAAAAAAAAAATYqXAAAAAAAAAAAAAE2KlwAAAAAAAAAAAABNipcAAAAAAAAAAAAATYqXAAAAAAAAAAAAAE2KlwAAAAAAAAAAAABNipcAAAAAAAAAAAAATYqXAAAAAAAAAAAAAE2KlwAAAAAAAAAAAABNipcAAAAAAAAAAAAATYqXAAAAAAAAAAAAAE2KlwAAAAAAAAAAAABNipcAAAAAAAAAAAAATYqXAAAAAAAAAAAAAE2KlwAAAAAAAAAAAABNipcAAAAAAAAAAAAATYqXAAAAAAAAAAAAAE2KlwAAAAAAAAAAAABNipcAAAAAAAAAAAAATYqXAAAAAAAAAAAAAE2KlwAAAAAAAAAAAABNipcAAAAAAAAAAAAATYqXAAAAAAAAAAAAAE2KlwAAAAAAAAAAAABNipcAAAAAAAAAAAAATYqXAAAAAAAAAAAAAE2KlwAAAAAAAAAAAABNipcAAAAAAAAAAAAATYqXAAAAAAAAAAAAAE2KlwAAAAAAAAAAAABNipcAAAAAAAAAAAAATYqXAAAAAAAAAAAAAE2KlwAAAAAAAAAAAABNipcAAAAAAAAAAAAATYqXAAAAAAAAAAAAAE2KlwAAAAAAAAAAAABNipcAAAAAAAAAAAAATYqXAAAAAAAAAAAAAE2KlwAAAAAAAAAAAABNipcAAAAAAAAAAAAATYqXAAAAAAAAAAAAAE2KlwAAAAAAAAAAAABNipcAAAAAAAAAAAAATYqXAAAAAAAAAAAAAE2Klwuq6oqqeriqvlxVX6qqd07rL6mqB6vqK9PnF0/rVVUfqKrjVfX5qrpuvX8DAADYmawLAMAcybkAAMyVrAsAm03x8lTPJnnXGOPqJDckuaOqrk5yZ5KHxhhXJXloOk+SW5JcNX0cSfLB1W8ZAABaZF0AAOZIzgUAYK5kXQDYYIqXC8YYT40x/mE6/o8kjya5PMmtSY5Otx1N8qbp+NYkHx5bPpXk0qp6+Yq3DQAAu5J1AQCYIzkXAIC5knUBYLMpXp5BVb0iybVJHkly2RjjqenS15JcNh1fnuTxhT/2xLQGAAAbS9YFAGCO5FwAAOZK1gWAzaN4uYOq+oEkf5bkl8cY/754bYwxkowlv96RqjpWVcdOnjx5HncKAADLkXUBAJij851zp68p6wIAsHZ+pgsAm0nxcpuqen62QssfjTE+Oi1//bm34J4+n5jWn0xyxcIfPzytnWKMcdcY4/oxxvWHDh3av80DAMBZyLoAAMzRfuTcRNYFAGD9/EwXADaX4uWCqqokdyd5dIzxvoVLDyS5bTq+LcnHFtbfXltuSPLMwlt6AwDAxpB1AQCYIzkXAIC5knUBYLNdvO4NbJjXJfnFJF+oqs9Na+9O8ltJ7quq25N8NclbpmsfT/KGJMeTfDvJO1a7XQAAaJN1AQCYIzkXAIC5knUBYIMpXi4YY/xdkjrD5Zt2uH8kuWNfNwUAAOeBrAsAwBzJuQAAzJWsCwCbza8aBwAAAAAAAAAAAGhSvAQAAAAAAAAAAABoUrwEAAAAAAAAAAAAaFK8BAAAAAAAAAAAAGhSvAQAAAAAAAAAAABoUrwEAAAAAAAAAAAAaFK8BAAAAAAAAAAAAGhSvAQAAAAAAAAAAABoUrwEAAAAAAAAAAAAaFK8BAAAAAAAAAAAAGhSvAQAAAAAAAAAAABoUrwEAAAAAAAAAAAAaFK8BAAAAAAAAAAAAGhSvAQAAAAAAAAAAABoUrwEAAAAAAAAAAAAaFK8BAAAAAAAAAAAAGhSvAQAAAAAAAAAAABoUrwEAAAAAAAAAAAAaFK8BAAAAAAAAAAAAGhSvAQAAAAAAAAAAABoUrwEAAAAAAAAAAAAaFK8BAAAAAAAAAAAAGhSvAQAAAAAAAAAAABoUrwEAAAAAAAAAAAAaFK8BAAAAAAAAAAAAGhSvAQAAAAAAAAAAABoUrwEAAAAAAAAAAAAaFK8BAAAAAAAAAAAAGhSvAQAAAAAAAAAAABoUrwEAAAAAAAAAAAAaFK8BAAAAAAAAAAAAGhSvAQAAAAAAAAAAABoUrwEAAAAAAAAAAAAaFK8BAAAAAAAAAAAAGhSvAQAAAAAAAAAAABoUrwEAAAAAAAAAAAAaFK8BAAAAAAAAAAAAGhSvAQAAAAAAAAAAABoUrwEAAAAAAAAAAAAaFK8BAAAAAAAAAAAAGhSvAQAAAAAAAAAAABoUrwEAAAAAAAAAAAAaFK8BAAAAAAAAAAAAGhSvAQAAAAAAAAAAABoUrwEAAAAAAAAAAAAaFK8BAAAAAAAAAAAAGhSvAQAAAAAAAAAAABoUrwEAAAAAAAAAAAAaFK8BAAAAAAAAAAAAGhSvAQAAAAAAAAAAABoUrwEAAAAAAAAAAAAaFK8BAAAAAAAAAAAAGhSvAQAAAAAAAAAAABoUrwEAAAAAAAAAAAAaFK8BAAAAAAAAAAAAGhSvAQAAAAAAAAAAABoUrwEAAAAAAAAAAAAaFK8BAAAAAAAAAAAAGhSvAQAAAAAAAAAAABoUrwEAAAAAAAAAAAAaFK8BAAAAAAAAAAAAGhSvAQAAAAAAAAAAABoUrwEAAAAAAAAAAAAaFK8BAAAAAAAAAAAAGhSvAQAAAAAAAAAAABoUrwEAAAAAAAAAAAAaFK8XFBV91TViar64sLaS6rqwar6yvT5xdN6VdUHqup4VX2+qq5b384BAODsZF0AAOZK1gUAYI7kXADYbIqXp7o3yc3b1u5M8tAY46okD03nSXJLkqumjyNJPriiPQIAwLm4N7IuAADzdG9kXQAA5ufeyLkAsLEULxeMMT6Z5Olty7cmOTodH03ypoX1D48tn0pyaVW9fDU7BQCA5ci6AADMlawLAMAcybkAsNkUL3d32Rjjqen4a0kum44vT/L4wn1PTGsAAHChkHUBAJgrWRcAgDmScwFgQyheLmGMMZKMZf9cVR2pqmNVdezkyZP7sDMAANgbWRcAgLmSdQEAmCM5FwDWS/Fyd19/7i24p88npvUnk1yxcN/hae00Y4y7xhjXjzGuP3To0L5uFgAAliDrAgAwV7IuAABzJOcCwIZQvNzdA0lum45vS/KxhfW315Ybkjyz8JbeAABwIZB1AQCYK1kXAIA5knMBYENcvO4NbJKq+pMkr0/ysqp6Isl7kvxWkvuq6vYkX03ylun2jyd5Q5LjSb6d5B0r3zAAADTJugAAzJWsCwDAHMm5ALDZFC8XjDHedoZLN+1w70hyx/7uCAAAzg9ZFwCAuZJ1AQCYIzkXADabXzUOAAAAAAAAAAAA0KR4CQAAAAAAAAAAANCkeAkAAAAAAAAAAADQpHgJAAAAAAAAAAAA0KR4CQAAAAAAAAAAANCkeAkAAAAAAAAAAADQpHgJAAAAAAAAAAAA0KR4CQAAAAAAAAAAANCkeAkAAAAAAAAAAADQpHgJAAAAAAAAAAAA0KR4CQAAAAAAAAAAANCkeAkAAAAAAAAAAADQpHgJAAAAAAAAAAAA0KR4CQAAAAAAAAAAANCkeAkAAAAAAAAAAADQpHgJAAAAAAAAAAAA0KR4CQAAAAAAAAAAANCkeAkAAAAAAAAAAADQpHgJAAAAAAAAAAAA0KR4CQAAAAAAAAAAANCkeAkAAAAAAAAAAADQpHgJAAAAAAAAAAAA0KR4CQAAAAAAAAAAANCkeAkAAAAAAAAAAADQpHgJAAAAAAAAAAAA0KR4CQAAAAAAAAAAANCkeAkAAAAAAAAAAADQpHgJAAAAAAAAAAAA0KR4CQAAAAAAAAAAANCkeAkAAAAAAAAAAADQpHgJAAAAAAAAAAAA0KR4CQAAAAAAAAAAANCkeAkAAAAAAAAAAADQpHgJAAAAAAAAAAAA0KR4CQAAAAAAAAAAANCkeAkAAAAAAAAAAADQpHgJAAAAAAAAAAAA0KR4CQAAAAAAAAAAANCkeAkAAAAAAAAAAADQpHgJAAAAAAAAAAAA0KR4CQAAAAAAAAAAANCkeAkAAAAAAAAAAADQpHgJAAAAAAAAAAAA0KR4CQAAAAAAAAAAANCkeAkAAAAAAAAAAADQpHgJAAAAAAAAAAAA0KR4CQAAAAAAAAAAANCkeAkAAAAAAAAAAADQpHgJAAAAAAAAAAAA0KR4CQAAAAAAAAAAANCkeAkAAAAAAAAAAADQpHgJAAAAAAAAAAAA0KR4CQAAAAAAAAAAANCkeAkAAAAAAAAAAADQpHgJAAAAAAAAAAAA0KR4CQAAAAAAAAAAANCkeAkAAAAAAAAAAADQpHgJAAAAAAAAAAAA0KR4CQAAAAAAAAAAANCkeAkAAAAAAAAAAADQpHgJAAAAAAAAAAAA0KR4CQAAAAAAAAAAANCkeAkAAAAAAAAAAADQpHgJAAAAAAAAAAAA0KR4CQAAAAAAAAAAANCkeAkAAAAAAAAAAADQpHi5R1V1c1X9c1Udr6o7170fAAA4X2RdAADmStYFAGCuZF0AWA3Fyz2oqouS/H6SW5JcneRtVXX1encFAAB7J+sCADBXsi4AAHMl6wLA6ihe7s1rkhwfYzw2xvhuko8kuXXNewIAgPNB1gUAYK5kXQAA5krWBYAVUbzcm8uTPL5w/sS0BgAAFzpZFwCAuZJ1AQCYK1kXAFbk4nVv4CCoqiNJjkyn36mqL65zPxeQlyX5t3Vv4gJhVn1m1WdWPebU15nVD69iI8D5I+ueM98/+syqx5z6zKrPrPpkXZghWfec+N7RZ1Z9ZtVnVn1m1SfrwszIuefM944+s+ozqz6z6jOrnj3nXMXLvXkyyRUL54entVOMMe5KcleSVNWxMcb1q9nehc2s+syqz6z6zKrHnPrMCi44su4+Mqs+s+oxpz6z6jOrPrOCC46su0/Mqc+s+syqz6z6zKrPrOCCs2vWlXPPjVn1mVWfWfWZVZ9Z9ZyPOflV43vzmSRXVdWVVXVJkrcmeWDNewIAgPNB1gUAYK5kXQAA5krWBYAV8Y6XezDGeLaqfinJXye5KMk9Y4wvrXlbAACwZ7IuAABzJesCADBXsi4ArI7i5R6NMT6e5ONL/JG79msvM2RWfWbVZ1Z9ZtVjTn1mBRcYWXdfmVWfWfWYU59Z9ZlVn1nBBUbW3Tfm1GdWfWbVZ1Z9ZtVnVnCBWTLresb7zKrPrPrMqs+s+syqZ89zqjHG+dgIAAAAAAAAAAAAwOw9b90bAAAAAAAAAAAAALhQKF6uUFXdXFX/XFXHq+rOde9n3arqnqo6UVVfXFh7SVU9WFVfmT6/eFqvqvrANLvPV9V169v5alXVFVX1cFV9uaq+VFXvnNbNapuqekFVfbqq/nGa1a9P61dW1SPTTP60qi6Z1r9vOj8+XX/FOve/DlV1UVV9tqr+cjo3qx1U1b9W1Req6nNVdWxa8wzuoKourar7q+qfqurRqnqtWcH8ybmnknP7ZN0+WXc5cm6frNsj58LBJeueStbtk3V75Nzlybo9cm6frAsHl6x7Klm3R87tk3WXJ+v2yLp9+511FS9XpKouSvL7SW5JcnWSt1XV1evd1drdm+TmbWt3JnlojHFVkoem82RrbldNH0eSfHBFe9wEzyZ51xjj6iQ3JLlj+rdjVqf7TpIbxxivTnJNkpur6oYkv53k/WOMVyb5ZpLbp/tvT/LNaf39030HzTuTPLpwblZn9pNjjGvGGNdP557Bnf1ukr8aY7wqyauz9e/LrGDG5Nwd3Rs5t0vW7ZN1lyPnLkfW3Z2cCweQrLujeyPrdsm6PXLu8mTdPjm3R9aFA0jW3dG9kXU75Nw+WXd5sm6frNuzr1lX8XJ1XpPk+BjjsTHGd5N8JMmta97TWo0xPpnk6W3LtyY5Oh0fTfKmhfUPjy2fSnJpVb18NTtdrzHGU2OMf5iO/yNbLwKXx6xOM/2d/3M6ff70MZLcmOT+aX37rJ6b4f1JbqqqWtF2166qDif5mSQfms4rZrUMz+A2VfWiJD+R5O4kGWN8d4zxrZgVzJ2cu42c2yfr9sm6fXLueeEZXCDnwoEm624j6/bJuj1y7nJk3T3z/G0j68KBJutuI+v2yLl9su5yZN098wxus4qsq3i5OpcneXzh/IlpjVNdNsZ4ajr+WpLLpmPzSzK9PfK1SR6JWe1oeuvpzyU5keTBJP+S5FtjjGenWxbn8b1ZTdefSfLS1e54rX4nya8m+d/p/KUxqzMZSf6mqv6+qo5Ma57B012Z5GSSP5jeAv5DVfX9MSuYO89yj9fCXci6u5N12+Tc5ci6u5Nz4eDyPPd4PdyFrHt2cu5SZN0+ObdH1oWDy/Pc4/XwLOTc3cm6S5F1sKoY1QAAIABJREFU+2Tdnn3PuoqXbKwxxsjWiwVJquoHkvxZkl8eY/z74jWz+n9jjP8ZY1yT5HC2/qfWq9a8pY1UVW9McmKM8ffr3ssF4sfHGNdl662l76iqn1i86Bn8nouTXJfkg2OMa5P8V/7/bbmTmBVA4rVwJ7Juj6y7Ozn3nMi6u5NzAZq8Hp5O1t2dnNsj6y5Nzu2RdQGavB6eSs7tkXV7ZN2lybo9+551FS9X58kkVyycH57WONXXn3ub1unziWn9QM+vqp6frdDyR2OMj07LZnUW09sDP5zktdl6+9+Lp0uL8/jerKbrL0ryjRVvdV1el+Rnq+pfs/WrA25M8rsxqx2NMZ6cPp9I8ufZCsWewdM9keSJMcYj0/n92QoyZgXz5lnu8Vp4BrLu8mTds5JzlyTrtsi5cHB5nnu8Hp6BrLscOXdXsu4S5Nw2WRcOLs9zj9fDHci5y5N1dyXrLkHWbdv3rKt4uTqfSXJVVV1ZVZckeWuSB9a8p030QJLbpuPbknxsYf3tteWGJM8svO3rrFVVJbk7yaNjjPctXDKrbarqUFVdOh2/MMlPJXk0WwHmzdNt22f13AzfnOQTU5t99sYYvzbGODzGeEW2Xo8+Mcb4+ZjVaarq+6vqB587TvLTSb4Yz+BpxhhfS/J4Vf3otHRTki/HrGDu5Nwer4U7kHX7ZN0eOXc5sm6PnAsHmqzb4/VwB7Juj5zbJ+v2ybl9si4caLJuj9fDbeTcPlm3T9btk3X7VpF164D8u9sIVfWGJL+T5KIk94wx3rvmLa1VVf1JktcneVmSryd5T5K/SHJfkh9K8tUkbxljPD198/69JDcn+XaSd4wxjq1j36tWVT+e5G+TfCHJ/07L707ySMzqFFX1Y0mOZusZe16S+8YYv1FVP5Kt/xXxkiSfTfILY4zvVNULkvxhkmuTPJ3krWOMx9az+/Wpqtcn+ZUxxhvN6nTTTP58Or04yR+PMd5bVS+NZ/A0VXVNkg8luSTJY0nekel5jFnBbMm5p5Jz+2TdPll3eXLu7mTdPjkXDi5Z91Sybp+s2yPnnhtZ9+zk3OXIunBwybqnknV75Nw+WffcyLpnJ+suZ7+zruIlAAAAAAAAAAAAQJNfNQ4AAAAAAAAAAADQpHgJAAAAAAAAAAAA0KR4CQAAAAAAAAAAANCkeAkAAAAAAAAAAADQpHgJAAAAAAAAAAAA0KR4CQAAAAAAAAAAANCkeAkAAAAAAAAAAADQpHgJAAAAAAAAAAAA0KR4CQAAAAAAAAAAANCkeAkAAAAAAAAAAADQpHgJAAAAAAAAAAAA0KR4CQAAAAAAAAAAANCkeAkAAAAAAAAAAADQpHgJAAAAAAAAAAAA0KR4CQAAAAAAAAAAANCkeAkAAAAAAAAAAADQpHgJAAAAAAAAAAAA0KR4CQAAAAAAAAAAANCkeAkAAAAAAAAAAADQpHgJAAAAAAAAAAAA0KR4CQAAAAAAAAAAANCkeAkAAAAAAAAAAADQpHgJAAAAAAAAAAAA0KR4CQAAAAAAAAAAANCkeAkAAAAAAAAAAADQpHgJAAAAAAAAAAAA0KR4CQAAAAAAAAAAANCkeAkAAAAAAAAAAADQpHgJAAAAAAAAAAAA0KR4CQAAAAAAAAAAANCkeAkA/B97dx5vV1nfi//zZCIDSQyDCCQEQanIFA0Q+tMqKg6o/dXh6u0FQaCtSPUitdQZh/aK9RaplVpFalFU0EqEAhWtFWRywAARwiCzhJBABpKQeTjP/WPtczwcTpIdks0hJ+/363VenL322mt/9/K4+fCs73oeAAAAAAAAAADapPESAAAAAAAAAAAAoE0aLwEAAAAAAAAAAADapPES2C6VUo4spTy8kee/UUr5P89kTQAAPDNKKQ+WUo7aisf7WCnlX7fW8Z5mDXuXUmopZdgGnv90KeXbz3RdAABs31oZ9QUdOvYGc/2mxn8BANi2PN0x3U2Nm27gNRsd792a48ullBNKKddv5PmflVL+fGu8F7D1abwE2vJsv1D7bKqvFd6uLqWsKKXctSWhqxXqlvX6WVlK6Sql7LIZxxhRSrnTQCMAwObre6G4vwu4tdYza61bdfBrUwNuz6RSyk6llEtKKctLKb8rpRyzBcc6tk++XdE6x1M38zg/3dwBUwAAGlv7RqSt4elcEO9gLaWU8vlSysLWz+dLKeVpHmuvPvl3Wetz/vVmHueTrdc9q/53AwAYjLZkvPfZNMFTKWVKKeWm1hjsTaWUKVtwrK/2ybSrSylPbOYxdiqlzH+2jHvD1qDxEtgqWoNRvlMaFyW5JcnOST6e5OJSyq5P50CtULdj90+Szyf5Wa11wWYc5m+SzH867w8AAEm+nGRNkt2SHJvkK6WUA57OgWqt3+mTb/8yyf1Jbm73GKWUY5MMfzrvDwDAM+PZ0EC5Bd6T5C1JDklycJI/TnLy0zlQrfWhPvn3oCRdSaa3e4xSyr5J3pFk7tOpAQCA9m3jObZHKWVEkv9I8u0kE5J8M8l/tLZvtlrre/vk2ouSfH8zD/P5JHc+nfeHZytNUsCTlFI+XEqZU0p5opTy21LKa0opb0jysST/s3X3wm9a+/6slPLZUsoNSVYk2aeU8qJSyk9KKYtar39nr2O/qZRySyllaSlldinl072e676j+cTWc4+XUt5bSjmslHJrKWVxKeWfN1Dzhuo7sTXT4xOllPtLKU8ZHGvNKLmgdZf3sRs5L28upcxs1fHzUsrBG9hvvyQvTfKpWuvKWuv0JLclefsmTv0mte6qPj5NKOq+I+ThUsoftx7vWEq5t5RyfK/XPD/Ju5J8bkvfHwBgMCqlHF5K+UUr580tpfxz9+BTKeXa1m6/aeXMdye5Mskeve7s3aP0mX29lPLyVmZc3Mq2J7S271BKOauU8lAp5dHWXcKj+qlp/yRfTfKHrfdY3Nq+wTzdy0mllEdan+X0jXzuI3rV+JtSypEb2G9Mmix7Rq11Wa31+iSXJTluE6e2Xe9OckGttZZmpvaZpZT/3XrvoaWUG0opn+xVz/gkn0ryoa30/gAA26TWeObprbHTJaWU75VSRvZ6vt/xzFLKt5LsleTyVtb8UCnlm6U1A2MpZc/WOO37Wo/3bY31Dmk9/ovWGOSiUsplpZQ9er1nLaW8r5RyT5J7+qn55a0ce2Q/H6k7ey9u1fWHrfe+qjSzTi4opXynlPKcPq87rJRyR2s8+fze56DPe+9RSplemhl2HiilnLqR0/vuJF+otT5ca52T5AtJTtjI/pvj+CTX1lofbNX1lVJKTxNmaWbX/GlrLLjbl5N8OM3NUAAA27Mp/eXfUsqs7mvmrcfDW/nxJb1e2++4aWts9+JSyrdLKUuTnNDPeO9xpVkJaGEp5eMbKq6U8p40N65/qJVpL29t/0gp5b7S9C3cUUp561NfWv659bnuKqW8ZiPvcVJpeiAeL6X8uJQyeQO7HplkWJIv1lpX11q/lKQkefWGjt2uXmPG3X0L3f/N8NLW4z1aufvIXq/5/5IcmOT8LX1/eDbReAn0KKX8QZL3Jzms1jo2yeuTPFhr/VGSM5N8r3UHwyG9XnZcmjuAx6aZVfEnSS5M8twkf5rkX0opL27tuzzNwNJzkrwpySmllLf0KWNakhcm+Z9JvphmxsijkhyQ5J2llFf2rXsj9T2W5M1JxiU5Mck/dv/LvuV5SXZJsmeawbSvtc5B3/PykiT/luau5p2TnJvkslLKDv2cxgOS3F9r7T2t9m9a27fUH6U5r9OTpNa6KMlJSc4rpTw3yT8mmVlrvaDXa85J05S6ciu8PwDAYLQ+yV+lyYV/mOQ1aWZhTK31Fa19DmnlzG8mOTrJI73u7n2k98FaA11XpslhuyaZkmRm6+m/T7Jfa9sL0uTQT6aPWuudSd6b5Bet9+i+uNxOnn5Vmjz9uiQfLv0sRVhK2TPJfyb5P0l2SnJ6kuml/1na90uyrtZ6d69tWyXfts7VK5JckCS11jVpbhr629I0n34kydAkn+31sjOTfCXJvC19fwCAQeCdSd6Q5PlpZmY8Idn4eGat9bgkDyX541bW/L9JrklzYTZJXplmRvJX9Hp8Xa21q5Ty6jQ3eL8zye5Jfpfku31qekuaMd4X995YmpvnL0ry9lrrz/r5LN3v95xWXb9Ic2H4c0n2SLJ/kklJPt3ndcemGcfeN012/UTfA7eaRi9Pk2P3TJP5TyulvL6fOpIm6/6m1+OtlX+fdGN9y18nOaiUckIp5Y+S/FmSd9daa+s170iyutb6wy19fwCAQaDf/JtmfPFdvfZ7Y5K5tdZbem3b2LjpnyS5OM2463d6v2Gr1+Erafoi9kiTryf2V1yt9Wut1//fVqbtbga9L821/vFJPpPk26WU3Xu9dFprn13S3HT+g1LKTn2PX0r5kzTX/t+WZuz5ujQZuz8HJLm1O1e23Jqt07fw9jS9IdcmSa31vjQ3Cn27lDI6TXPlN7tzfyllaJJ/TtOLUvs7IGyrNF4Cva1PskOSF5dShtdaH2z9S3JjvlFrvb3Wui5NyHmw1np+rXVdK8hMT7MMSmqtP6u13lZr7aq13pomBPRtpPy7WuuqWut/pbmwfFGt9bHWncXXJXlJ2lRr/c9a6321cU2S/0oTaHo7o3WHxzVpLj6/8ykHahpLz621/qrWur51wX11kiP62XfHJEv6bFuSpjF1S707ycW11mXdG1rn6ftJfpomQPbM6tm6U2ZorfWSrfDeAACDUq31plrrL1v59cE0F6WfcrPPZjgmyX/XWi+qta6ttS6stc5sXWR9T5K/qrUuat2oc2aam5XarbWdPP2ZWuvyWuttaQa4/lc/h3pXkh/WWn/YOtZPksxIkyf72jHJ0j7btla+PT7NRfwHujfUWmelaQi9NE1D6HG11vVJUko5NMnL0jS1AgCQfKnW+kjrBu3L09zgk2zeeGbSNF6+vNWg+Iok/zdN7kqavHlN6/djk/xbrfXmWuvqJB9NM0v73r2O9blW3u19I/g70uTso2utN7b74Wqt99Zaf9Iav52f5Ow8Nf/+c611duscfDb959/Dkuxaa/3bWuuaWuv9Sc7LhrN43zHeJUl27DML5dPx8iS7pbmonySpta5IcxH/7DTLQP7vWuvDSVJKGZvmvxk+sIXvCwAwWGwo/347yRtLKeNaj49L8q0+r93YuOkvaq2XtsZK+05o9D+SXFFrvbaVgc9I0rU5Rddav9+qu6vW+r00s8Mf3muXx9LMTLm29fxv09x439d70+TtO1v9GWemmQW0v1kvO923cEHvps5a63lJ7k3yqzQ3afWeGfTUJL+qtd60Fd4bnlU0XgI9aq33JjktzV3Dj5VSvtt7qZgNmN3r98lJppVm+ZrFpVkS8dg0M0umlDKtlHJ1a1rpJWmCwS59jvdor99X9vN4x3Y/Tynl6FLKL1vTWi9OcyG59/s9Xmtd3uvx79LcpdLX5CR/3edzTdrAvsvSzLDZ27gkT/TdsZSyV/n9EpXL+j7fZ9/RaQYov9nP019LMy33N2qtC1v7j0kzQLqxJXMAALZ7pZT9SilXlFLmtZaSOTNPzaibY1Kau5P72jXJ6CQ39cqUP2ptb7fWdvJ073y+sXz7jj759uVpBsT6ajvftmpc1utnr018pL6z/XT7ZqvGH9Za72kdd0iSf0nygdagIgAAT54FfEV+P3a6OeOZ3TPULE9z4fqPklyR5JHW6kC9Gy/3SJMxu1+3LMnCNLNIduudR7udluTfWzfZtK2UsltrjHpOK6t/O08//+7R53x8LE0TZH/6ZuBxSZb1mS2ou8Yre+XfYzfxkd6dZHrvG+uTpNb6qzSzjJYk/97rqU8n+VbrBjEAADaQf2uzKtENSd5eSnlOmlWLvtPntRvLjf1l2G579H6+1V+wcHOKLqUcX0qZ2SuLHpgn59o5fbLmxnLtP/U6zqI0GXLPfvbdnL6FP+qVaW/fxGfZK81s+Rf08/R5aT7bOa0m1bT6TU7NkxsxYdDQeAk8Sa31wlrry9P8S7sm+Xz3Uxt6Sa/fZye5ptb6nF4/O9ZaT2k9f2GSy5JMqrWOT/LVNEFgq5Te+0FrGfDpSc5Kslttlmf8YZ/3m9BqUOy2V5InLRXZMjvJZ/t8rtG11v6m7b49yT6tu5G7HdLa/uSCa32o/n6Jyk01lL41TXD6WZ/POTRN4+UFSf6ylPKC1lMvTLJ3kutKKfOS/CDJ7q2Ggr038V4AANuTryS5K8kLa63j0lyA3VhG3dRSKLPTLHPY14I0NxId0CtTjt9IDuzvfdrJ05N6/b6xfPutPvl2TK317/vZ9+4kw0opL+y1rd98myS9822t9aH+P1pSSnlZmsHDi/t5+l/SXOx/fSnl5a1t45IcmuR7rXz769b2h1tLMgIA8HubGs/sL2tek2Y2nxG1WX3omjSNghOSzGzt80iaceMkPTd/75xkTq/j9HfsdyR5SyllYzM39ve6M1vbD2pl9Xfl6effB/qcj7G11v5mfE+arHtIr8cby79H98q/fS/u9yiljMoGbqwvpbwvzUpUjyT5UK+nXpPk1NaY7rw0n/XfSykf3tD7AABsx76ZJi++I80MlnP6PL+x3LixMd+5vV/bmjBp543s37dvYXKahsT3J9m51bcwK0/OtXv2mV19Y7n25D65dlSt9ef97Ht7koP7HPfg9N+3cF2vTLuppciPS3JDaxb53p9zxyRfTPL1JJ/utVT64Wlu+L+jlWn/KcnhrYw7dBPvBc96Gi+BHqWUPyilvLrVtLgqzYXh7mmyH02yd2ummQ25Isl+pZTjSinDWz+HlVL2bz0/NsmiWuuqUsrhaZZh3Fr61jcizWDV/CTrSilHJ3ldP6/7TCllROti7ZvTLNvd13lJ3tuaYaiUUsaUUt7Up7kySVJrvTvNQOSnSikjS7Pc98FpmkC3xFOm6275WJrwdlKSf0hyQSugzEoTAKe0fv48zTmako3fsQMAsL0Zm2Yp7WWllBclOaXP848m2afP451LKeM3cLzvJDmqlPLOUsqwUsrOpZQptdauNLnyH0spz02SUsqepZTXb+A4jyaZWEoZ0afWTeXpM0opo0spByQ5Mcn3+tnn20n+uJTy+lLK0FZuPbKUMrHvjq07uH+Q5G9bOfhlSf4kT12qZ3N1z/bzpDusSynHJZma5IQ0d0J/szVotyRNo2Z3vu2+SD41zfI1AAD83qbGM/tm3KRptHx/kmtbj3/Wenx9rXV9a9tFSU4spUxpjSGfmWbJwAc3Uc8jaZoIP1BK6Zu3u81PMxbdu66xaWbqWVJK2TPJ3/TzuveVUia2Lux+PP3n3xuTPFFK+XApZVQrAx9YSjlsA7VckOSDrby+R5K/TvKNTXzGTXlrkseTXN17YyllvyT/J02TwHFJPlRK6V4y8zVpZgzqzsCPJDk5yZe3sBYAgMHo0iQvTfKB9D8bYzvjpv25OMmbSykvb43V/m023mvVN2uPSXM9f36SlFJOTJPxentumhtuhpdS3pFk/zSTSvX11SQfbX2GlFLGt/bvz8+SrG8dd4dSyvtb26/aSO3tOD79Z+N/SjKj1vrnSf6zVWuSXJlmwqjuTPvJJLckmdLrvzNgm6XxEuhthyR/n2Y2nnlp/gX/0dZz3Q2JC0spN/f34tZF09cl+dM0g0Dz0syYuUNrl79Mc8H2iTT/Qv33/o7zND2pvlYtp7be4/E0F6Uv6/Oaea3nHklzgfy9tda7+vlcM5L8RZJ/bu1/b5oLwRvyp2lm43k8zfn8H7XW+U/vYzUX5JO8On0CYillapIPJjm+FUo+nya0faTWuq7WOq/7J81smV2txwIMAMDvnZ4mKz6R5gJ13wG3T6dp/ltcSnlnKy9elOT+1rYnLfnSmuXxjWkuzi5Kc1NO92w5H06TJX9ZmqUS/zvJH2ygrqvS3H08r5SyoLWtnTx9Tes9fprkrFrrf/XdodY6O03z5MfSDPjNTnMRe0NjBH+ZZFSSx1qf/ZRa60aXnNmYUsrIJO9Mn9l+SrNMzRfT5NtltdYLk8xI8o+10TvfdufrR2uta55uLQAAg1Eb45mfS/KJVp49vbXtmjSNjt2Nl9cnGd3rcWqt/53kjDQ3mc9NM9P7n7ZZ00NpGgk/Ukr5836eX5Hks0luaNV1RJLPpLl4viTNxdsf9HPoC5P8V5qluu9L08TY99jr09x0PyXJA2nGv/81yYZupjo3yeVJbktzg/t/trZtiXenmXW+58b6UsqwNDdFfb7W+pta6z1pMvq3Sik71FoX9snA65M83nepcgAAklrryjQ59fnpPzductx0A8e9Pcn70uTOuWny9cMbecnXk7y4lWkvrbXekeQLSX6RpinzoDTLovf2qzQrWi5Ik4n/R631KcuZ11ovSdMT8N3W+PKsNMuq91f3miRvSdMouTjNRE5v2ZKx1FLKHyaZmD6TWZVS/iTJG/L7SQ0+mOSlpZRja62r+2TaJUnWtn6HbV556uRpAAAAAAAAAAAA24ZSyieT7FdrfddA1wJsH4YNdAEAAAAAAAAAAABPRyllpyR/luS4ga4F2H5YahwAAAAAAAAAANjmlFL+IsnsJFfWWq8d6HqA7YelxgEAAAAAAAAAAADaZMZLAAAAAAAAAAAAgDZpvAQAAAAAAAAAAABok8ZLAAAAAAAAAAAAgDZpvAQAAAAAAAAAAABok8ZLAAAAAAAAAAAAgDZpvAQAAAAAAAAAAABok8ZLAAAAAAAAAAAAgDZpvAQAAAAAAAAAAABok8ZLAAAAAAAAAAAAgDZpvAQAAAAAAAAAAABok8ZLAAAAAAAAAAAAgDZpvAQAAAAAAAAAAABok8ZLAAAAAAAAAAAAgDZpvAQAAAAAAAAAAABok8ZLAAAAAAAAAAAAgDZpvAQAAAAAAAAAAABok8ZLAAAAAAAAAAAAgDZpvAQAAAAAAAAAAABok8ZLAAAAAAAAAAAAgDZpvAQAAAAAAAAAAABok8ZLAAAAAAAAAAAAgDZpvAQAAAAAAAAAAABok8ZLAAAAAAAAAAAAgDZpvAQAAAAAAAAAAABok8ZLAAAAAAAAAAAAgDZpvAQAAAAAAAAAAABok8ZLAAAAAAAAAAAAgDZpvAQAAAAAAAAAAABok8ZLAAAAAAAAAAAAgDZpvAQAAAAAAAAAAABok8ZLAAAAAAAAAAAAgDZpvAQAAAAAAAAAAABok8ZLAAAAAAAAAAAAgDZpvAQAAAAAAAAAAABok8ZLAAAAAAAAAAAAgDZpvAQAAAAAAAAAAABok8ZLAAAAAAAAAAAAgDZpvAQAAAAAAAAAAABok8ZLAAAAAAAAAAAAgDZpvAQAAAAAAAAAAABok8ZLAAAAAAAAAAAAgDZpvAQAAAAAAAAAAABok8ZLAAAAAAAAAAAAgDZpvAQAAAAAAAAAAABok8ZLAAAAAAAAAAAAgDZpvAQAAAAAAAAAAABok8ZLAAAAAAAAAAAAgDZpvAQAAAAAAAAAAABok8ZLAAAAAAAAAAAAgDZpvAQAAAAAAAAAAABok8ZLAAAAAAAAAAAAgDZpvAQAAAAAAAAAAABo0yYbL0sp/1ZKeayUMmsDz5dSypdKKfeWUm4tpbx065cJAABbn6wLAAAAAAAAwOZqZ8bLbyR5w0aePzrJC1s/70nylS0vCwAAnhHfiKwLAAAAAAAAwGbYZONlrfXaJIs2ssufJLmgNn6Z5DmllN23VoEAANApsi4AAAAAAAAAm2vYVjjGnklm93r8cGvb3L47llLek2amoIwZM2bqi170oq3w9gAA27abbrppQa1114Gug37JugAAW0DWZbDYZZdd6t577z3QZQDAs9KDDz6YBQsWlIGuA9h8ci4AbNimcu7WaLxsW631a0m+liSHHnponTFjxjP59gAAz0qllN8NdA1sOVkXAOCpZF0Gi7333jsyPgD079BDDx3oEoCnSc4FgA3bVM7d5FLjbZiTZFKvxxNb2wAAYFsn6wIAAAAAAADwJFuj8fKyJMeXxhFJltRan7L0IgAAbINkXQAAAAAAAACeZJNLjZdSLkpyZJJdSikPJ/lUkuFJUmv9apIfJnljknuTrEhyYqeKBQCArUnWBQAAAAAAAGBzbbLxstb6vzbxfE3yvq1WEQAAPENkXQAAAAAAAAA219ZYahwAAAAAAAAAAABgu6DxEgAAAAAAAAAAAKBNGi8BAAAAAAAAAAAA2qTxEgAAAAAAAAAAAKBNGi8BAAAAAAAAAAAA2qTxEgAAAAAAAAAAAKBNGi8BAAAAAAAAAAAA2qTxEgAAAAAAAAAAAKBNGi8BAAAAAAAAAAAA2qTxEgAAAAAAAAAAAKBNGi8BAAAAAAAAAAAA2qTxEgAAAAAAAAAAAKBNGi8BAAAAAAAAAAAA2qTxEgAAAAAAAAAAAKBNGi8BAAAAAAAAAAAA2qTxEgAAAAAAAAAAAKBNGi8BAAAAAAAAAAAA2qTxEgAAAAAAAAAAAKBNGi8BAAAAAAAAAAAA2qTxEgAAAAAAAAAAAKBNGi8BAAAAAAAAAAAA2qTxEgAAAAAAAAAAAKBNGi8BAAAAAAAAAAAA2qTxEgAAAAAAAAAAAKBNGi8BAAAAAAAAAAAA2qTxEgAAAAAAAAAAAKBNGi8BAAAAAAAAAAAA2qTxEgAAAAAAAAAAAKBNGi8BAAAAAAAAAAAA2qTxEgAAAAAAAAAAAKBNGi8BAAAAAAAAAAAA2qTxEgAAAAAAAAAAAKBNGi8BAAAAAAAAAAAA2qTxEgAAAAAAAAAAAKBNGi8BAAAAAAAAAAAA2qTxEgAAAAAAAAAAAKBNGi8BAAAAAAAAAAAA2qTxEgAAAAAAAAAAAKBNGi8BAAAAAAAAAAAA2qTxEgAAAAAAAAAAAKBNGi8BAAAAAAAAAAAA2qTxEgAAAAAAAAAAAKBNGi8BAAAAAAAAAAAA2qTxEgAAAAAAAAAAAKBNGi8BAAAAAAAAAAD91bFhAAAgAElEQVQA2qTxEgAAAAAAAAAAAKBNwwa6AAAAAAAA4Jm1fv36LFq0KF1dXQNdCsB2Zaeddsrw4cMHugyAQUvOBRgY22PO1XgJAAAAAADbmYULF+YLX/hCjjrqqIEuZVC68cYbs/POO2ffffcd6FIGnVprfvCDH+SP//iPM2LEiIEuZ9B5/PHH86tf/SpveMMbBrqUQenGG2/Mm9/85hxyyCEDXQrAoCXndpac2zlybmfJuZ21veZcjZcAAAAAALCd6erqynOf+9y89rWvHehSBqWlS5dm4sSJmTZt2kCXMujUWnPDDTfk1a9+dUaNGjXQ5Qw6jzzySB555BHfDR2yaNGirFu3bqDLABjU5NzOknM7R87tLDm3s7bXnDtkoAsAAAAAAACeHWqteeKJJyzN2CHr16/P4sWLs2TJknR1deWxxx7Lvffe+6R9Zs+enR//+Me54447Mm/evJ7ty5Yty6233ppa61OO232ce++9N4899ljP9nXr1mX+/Pn9vmawqbVmxYoVWbNmzUCXMuh0dXVl+fLlqbWm1trze2+11tx222257rrrer4/nnjiidx222155JFH8rvf/W6Dx1+7dm0WLly4wb/Tu+++O/Pnz8/MmTOzcuXKnu0rV67M4sWLex6vX78+M2bMyPr165/0+vnz5+fKK6/MkiVLNvuzAzB4yLmdJed2jpzbOXIuW0rjJQAAAAAAkLVr1+aCCy7I29/+9ixYsGCgyxl0lixZko9//OP5/Oc/ny984Qu57LLLMnPmzFx22WU9F/q6urryxS9+MevWrcuPfvSj/PrXv+55bs6cOfn617+eJD0X7rqf6z7OpZdemt/85jc925cuXZorrrhi0F+QrrXmV7/6VY499tj8+Mc/HuhyBp3HH388Z5xxRrq6urJs2bJ89KMfzbp163r+zrqbAc4+++yMHDkySfO/yezZs3P++efn5z//eX7yk5/07Nv9fPfP/Pnz86Mf/ehJ23v//oMf/CCzZs3Kl7/85Z4L17XWPPDAA7nhhht69l29enXOPvvsrFmz5knHP++887Jo0aIMHTp0AM4eAM8Gcm5nybmdI+d2lpzLlrLUOAAAAAAAkFprpk6dmquuuuopM2mwZWqt+da3vpV99903J510UkopWbVqVa677rrceeed+eQnP5mXvOQlOeigg3LdddflRS96UYYOHZpf/OIXuf766/PmN785z33uczNnzpycddZZGTduXE488cTcfPPNueKKK7Jq1arsvvvuqbXm+uuvz09+8pO87W1vy8EHH5xx48YN9Md/RkyYMCGvetWrsmLFioEuZdDp6urKggULsm7duqxZsyYLFizI6tWr861vfSsPPvhg9thjj+y55565/fbbs3Dhwtx999256KKLkqTnu+Q3v/lNPvGJT+RlL3tZXve612X69Om5/fbbM2HChLzjHe/IjjvumIULF+Yb3/hGdtppp7zrXe/KFVdckVtuuSUPPPBADj/88Kxbty4XX3xx5s6dm/e9730ZP358Ro4cmcWLF+e8887LmjVrsmzZsqxatSoXXHBBVq5cmTe96U358Y9/nDe+8Y0uSANsx+TczpFzO0/O7Rw5ly1lxksAAAAAACAjRozIi1/8YhdtOuS2227Lq1/96txwww35u7/7u1xyySVJmmXkTjzxxEyfPj1jxozJpEmT8opXvCJDhgxJKSXHH398/u3f/i3r16/PE088kXe84x25//778/Of/zznn39+TjrppIwdO7Zn1pNhw4bl2GOPzde//vUsX748//Ef/zHol9QspeQP/uAPsuOOOw50KYPWrFmzctJJJ+WUU07J/Pnzc/PNN2fBggV505velPvuuy8vfvGLM3ny5Lz0pS/Neeedl7e+9a2ZPHlyzwXpNWvW5MQTT8x3vvOd3Hnnnbn55pvzrne9K3fccUfWrl2bK664IldffXVGjBiR173udZk3b16uuuqqnHzyyVm7dm3PMfbaa68cccQR+e53v5tHHnkkP/vZz3LppZdm4sSJOeqoo7Jy5cr89re/zT333JO3ve1ted7znpe99947Rx55ZEaMGDGQpxCAASTndpac2zlybufJuWwJjZcAAAAAAAAdttNOO+XBBx/M4Ycfnre+9a259tprkyQveclLMnny5AwbNixDhgzJ6NGjs+uuu6aUkmnTpmWvvfbK6tWrs379+uy3336ZPHlyJk+enPvvvz8rV67MpEmTcsQRR6SUkiFDhuSII47IXnvtlZUrVw76C9E8c/bff/+cc845+cIXvpBddtklo0ePzowZM3L55ZfnVa96VcaNG5fRo0dn7NixefTRR7PPPvtk2rRpGT58eJLksMMOy1577ZUkGTp0aO65555cdNFFecUrXpFhw5oF+o466qisW7cuZ555Zu69996MHz8+e+65Zw455JAkyejRo3P44Ydn7733zuOPP95T2z333JP99tsvBx10UHbZZZe86EUvyoEHHphPf/rTeeyxxzJmzJjsuuuumm0AoEPkXLZlci5bQuMlAAAAAACQtWvX5vrrr8/cuXPz85//3FJ2W1EpJcccc0zOOeecXH755fnFL36RESNGpJSSUkrPPv09TtIzK9BNN92USy65JNdcc02OOOKIjBo1KtOnT8/FF1/8lNd0/3N7UGvNrFmzcuedd2bWrFmZPXv2QJc06AwfPjzjx4/PuHHjMnTo0CxbtiwjR47M+PHjM2rUqNRaU0rJ8OHD8/znPz/f/e53c+GFF2bt2rVP+lsspWTFihUZMWJERo4cmQkTJvTMFjR37tzsv//+WbRoUXbeeefcd999ufzyy3P11Vc/6W+7+zjdpk2blu9973v57ne/m7lz52bRokV57nOfmxEjRmTu3Lnb1f8XAOifnNs5cm5nybmdJ+eyJYYNdAEAAAAAAMDA617C7wMf+ECGDRuWWutAlzSoHHjggTnnnHNy1113Zaeddspb3vKWDB06NC984QszZMiQfPCDH8xznvOc/PVf/3XGjh2bN7/5zRk1alRGjRqV008/PZMnT84//dM/Zfny5fnEJz6RF73oRTnjjDNyxx135JRTTsmECRNSa824ceOy44475vTTT8/q1aszZsyYDBky+Ofh6Orqymte85ok8be7lY0fPz4f/OAHe2aq+pu/+ZvMnDkzL3vZy3LYYYfl85//fP7lX/4lH/zgBzN06NCcdtppufnmmzN16tSMGjUqO+20U9auXZthw4bl9NNPz9y5c3PwwQfn6KOPzuc+97m85z3vybhx4/Kc5zwns2fPzoc//OEcdNBBOeOMMzJv3rx87nOfy/Of//zssssu2WWXXTJu3Lgcf/zxmTt3bsaPH5/Xv/71GT9+fEaMGJGzzjorEyZMyPDhw3Pcccfl8MMPz4QJE/K85z1voE8jAANIzu0sObez5NzOkXPZUhovAQAAAACAjBgxIq985SsHuoxBq5SSSZMmZdKkSU/avssuuyRJDj744CTpWW5u8uTJPftMmTIlSbOMXW8TJ07MxIkT+32/F7/4xfnSl76UN7zhDYN+JpRSSg4++OCec8jWNWLEiJ5zO3z48BxyyCEZMmRILrzwwjzyyCM55phjMmHChOy8885Jkp133jmvfe1r+z3WlClTMmHChFx//fW5+OKL85rXvCbXXHNN3vjGN2b33XfPHnvs0bPvAQcckAMOOKDncffxR44cmXXr1uUb3/hGjjnmmOywww5P+e7q/f69jwHA9knO7Sw5t3Pk3M6Sc9lSZaC6oQ899NA6Y8aMAXlvAIBnk1LKTbXWQwe6DrYeWRcAoCHrMlgMxow/b968nHrqqTn0UP8X7YTbbrst48ePz1577TWgdXR1dT1l6bptXa01//3f/50jjzwyw4cPH+hyBp2lS5fm1ltvzctf/vJN7tvV1ZUkT2umqe6Zx0opPf/cnL/T7tdva7NczZo1Kx/4wAcyderUgS5lqzr00EMzY8aMwfNFA9sROZfNJed2jpzbWXJuZ22vOdeMlwAAAAAAsB06+OCDc9JJJw10GYPS5Zdfnj333DMvfelLB7qUQafWmoULF+bd7353Ro4cOdDlDDrz5s3LqFGjfDd0yKWXXjrQJQBsF+TczpFzO0fO7Sw5t7O215yr8RIAAAAAALZDo0aN6ln+7+motWbt2rUZPnx4vzN4dD8/bNiwbW62ji01bty4jB8/fpPnt3tVssE0U0+n1VozatSo7Lzzzhk1atQm902c382xZs2ajBkzxt9uh4wdO3agSwDYLsi5nSPndo6c21lybmdtrzl3+/o3AAAAAAAAg0Yp5Q9KKTN7/SwtpZxWStmplPKTUso9rX9OaO1fSilfKqXcW0q5tZRimpZerrvuutx9991JklWrVmX69OlZv379BvdfsWJFzjjjjKxbt26D+5x11lmZPXv2Vq91W3TXXXflxhtvTJLcf//9uf7663PTTTfluuuuG+DKtn211lxxxRVZtGhRkuTHP/5x5s2bl+985ztZsGDBAFe37Vu+fHkuueSSdHV19Xw3LFq0KN/85jd7lmEEYOuTdbceObez5NzOkXM7S85lS2m8BAAAAABgm1Rr/W2tdUqtdUqSqUlWJLkkyUeS/LTW+sIkP209TpKjk7yw9fOeJF955qt+9lqxYkUuvPDC1Fpzxx135Kabbsr69eszc+bMzJo1K48++mgWLFiQWmuWLVuWpUuX5qGHHsp9992XO++8M11dXVm9enVmzJiRu+66K0uWLMncuXMzd+7czJgxI6tXrx7ojzigfvvb32bGjBlJkgcffDA33HBDJk+enL333ntgCxskfvjDH2bx4sVJkp/85CdZsGBBpk6dmjFjxgxwZdu+FStW5NJLL02tNatXr84PfvCDjBo1KlOnTjUTEEAHybpbj5zbWXJuZ8m5nSPnsqU0XgIAAAAAMBi8Jsl9tdbfJfmTJN9sbf9mkre0fv+TJBfUxi+TPKeUsvszX+qz0xFHHJH7778/y5cvz09/+tMcddRR+f73v59rr702Z511VqZPn55PfepTWbVqVb7yla9k1qxZ+d3vfpdLLrkkZ555Zm6//face+65mTlzZj7+8Y9nxowZWbVqVb7zne/ke9/7Xs/F7u3ZTTfdlIsuuihXXXVVaq257bbbctlllw10WYPC2rVrc/nll+eiiy7KPffckyS54IIL8vDDDw9wZYPDvHnz8r3vfS/Tp0/PsmXLsnz58pxzzjkbnS0MgK1K1t0Ccm7nybmdI+d2lpzLltB4CQAAAADAYPCnSS5q/b5brXVu6/d5SXZr/b5nkt7rAT7c2vYUpZT3lFJmlFJmzJ8/vxP1PuuMGzcu++yzT37961/ngQceyLRp0/LQQw9l0qRJ2X333XP44Ydnp512yo033pi77747BxxwQCZNmpTTTjstRx55ZO6444489NBD2WefffK85z0vL3jBC7LDDjvklFNOyZ/92Z9l5syZA/0RB9y6deuyevXqrF27NklzEXV7nyFpa6m1Zs2aNVm9enXPRdKVK1e6YLqVdM/0tXr16tRaU2vNihUrBrosgO3JVsu6cq6c2wlybufIuZ0l57Ilhg10AQAAAAAAsCVKKSOS/P9JPtr3uVprLaVs9vQztdavJflakhx66KHbxfQ1pZS89rWvzdlnn53DDjsso0ePzqpVq3LLLbdk6tSpOeigg7J8+fJ8+ctfzuGHH56xY8dm6NChGTp0aEop6erqypo1a/Lzn/88b3rTmzJx4sSUUjJs2LCeC1jbu2nTpuWEE07IVVddlV//+tcDXc6gMmLEiLz97W/PPvvsk1mzZg10OYPOHnvskeOPPz7Lli3L9ddfP9DlAGxXtnbWlXPl3E6QcztHzu0sOZctofESAAAAAIBt3dFJbq61Ptp6/GgpZfda69zW8oqPtbbPSTKp1+smtrbRMmXKlOy+++45+uijey4gl1Jy44035vHHH88xxxyTPfbYI0cffXSGDRuWKVOmpJSSSZMmZdiw5pLDkCFDcuWVV2bdunU54IADMmbMmNRac8ABBwzkRxtwu+22W8852nnnnbPvvvsmSYYOHTqQZQ0aBx54YEaPHp0k2X///bPjjjumlJIhQyz+tqVGjBiRQw45pKfBZMqUKRkyZIhzC/DMkXW3Ajm3c+TczpJzO0fOZUtpvAQAAAAAYFv3v/L7pReT5LIk707y961//kev7e8vpXw3ybQkS3ot00iS0aNH50tf+lJKKVm/fn0WLFiQKVOmZOnSpRk+fHhGjx6ds88+O6WUJMnpp5+eUkqOOuqorFixIhdccEGmTp2adevWZejQoXnPe97Ts+9f/MVfDORHG3DTpk3r+f3ggw/OxIkTc+aZZ+boo48ewKoGj/e+9709f2snnnhibr311ixYsCC77bbbJl7JpowbNy6nnXZaSikZPXp0/uqv/ioXXXRR9t57bw0VAM8MWXcrkHM7R87tLDm3c+RctpTGSwAAAAAAtlmllDFJXpvk5F6b/z7Jv5dS/izJ75K8s7X9h0nemOTeJCuSnPgMlvqss3Dhwtxxxx0b3ee4447Lgw8+mF133TX77rtv7rzzzo3uf9JJJ+Xhhx/OS1/60kyePDl33XXX1ix5mzF79uysXbs2Y8eO3eA+K1euzB/+4R9m11133eT/DvxerTULFizIXXfdlR122GGD+y1atCjHHHNM5syZk0ceeeQZrHDb9thjj2XevHkb/Zvs6urK2LFj84Y3vGGT3wk82Zw5c/KCF7xgoMsAtiGy7tMj53aOnNs5cm5nybmdtb3mXI2XAAAAAABss2qty5Ps3GfbwiSv6WffmuR9z1Bpz3pz587NjTfe2Na+q1atyk033dT2sVevXp0FCxY83dK2effee28WLVqUVatWbXLfW2655RmoaPCotWbOnDmZMWNGhg8fvsn9H3300U3uw+8tXrw4Dz30UFvfDYsXL34GKhpc7r///rzyla8c6DKAbYis+/TIuZ0j53aOnNtZcm5nba85V+MlAAAAAABshw488MCccMIJA13GoDR27NhMnDjxScsusnXUWvPggw/mXe96V0aNGjXQ5Qw63bMm+W7oDH+zAM8MObdz5NzOkXM7S87trO31b3bIQBcAAAAAAAAMvPXr12f+/Pmptaarqyvz58/PmjVrcu+996aZQIktsWLFiixdujRJs/zikiVLsnDhQjPVbAW11ixcuDBr165N0iy/uGbNmtx///1tzcbExvX33bB69ercd999vhsA2CbIuZ0l53aOnNtZci5bSuMlAAAAAACQJUuW5BOf+ES6urqyYsWKfPSjH82yZcty8803u+i0FVx99dX5/ve/nyT59a9/nfPPPz9z5szJAw88MMCVDQ5nnnlm5syZkyQ5++yzc88992TmzJlZvnz5AFe27Xv88cfzyU9+Ml1dXVm2bFk+9rGP+W4AYJsi53aWnNtZcm7nyLlsKUuNAwAAAAAAqbXmiSeeyBNPPJGVK1dm2bJlGTp0aB5//HEXnbaCdevWZenSpT3nePXq1RkyZEgWL1480KUNCitWrOg5t0888URqrVm1alVWr1490KVt87q/G5YtW9bzM2zYsCxatMh3AwDbBDm3s+TczpJzO0fOZUuZ8RIAAAAAAEiS/Pa3v80pp5ySD3zgA3nssceyZs2aXHvttenq6hro0gaFiy66KCeffHLOPvvsdHV1Zc6cObn99tsHuqxBYdWqVfn4xz+ek08+OT/72c+SJDfeeGOWLFkysIUNEnfccUfe+9735rTTTsuCBQuyevXqXHfddS5IA7DNkHM7S87tHDm3s+RctoQZLwEAAAAAgCTJ/vvvn/POOy8rVqzI+9///oEuZ9A57rjjcvLJJ+fqq6/OzJkzB7qcQWXkyJH5h3/4hzz/+c/PRz7ykYEuZ9A58MADc+6552b58uU59dRTB7ocANhscm5nybmdI+d2lpzLltB4CQAAAAAApJSSESNGZPjw4RkxYkRGjBiRUspAlzVoDBkypOe87rDDDhk2zCWaran3362/3a2v+7yuXbvW+QVgmyPndpac21lybmfJuWwJ33YAAAAAAEDGjRuXT33qUxk6dGhGjx6dz3zmM1m6dGnGjh2bIUOGDHR527xXvOIVWbt2bZJk6tSp2W+//XL11Vdn1113HeDKBocPfehDPefy1FNPzciRI7NmzZrsuOOOA1zZtm/ChAn55Cc/mSFDhmTMmDH59Kc/nSVLlmTcuHG+GwDYJsi5nSXndpac2zlyLltK4yUAAAAAAGynurq6en4fMmRIJk2alFprSinZc889c/755+dtb3tbSilP2peNq7Wm1vqkczZ27NgkzTkfM2ZMli1blgceeCAnnHCCc7sZaq09/+x93vbYY48kzfl93vOel+uuuy4HHHBAdtttN+d3M/T3tztkyJBMnDjxSd8NX//61/P2t789SZzfzdD99wtA58m5nSHndo6c21lybmdtrzlX4yUAAAAAAGyHbrjhhixdunST+82ZMyc33HDDM1DR4HHnnXdm3LhxufLKKze573nnnfcMVDS4XHPNNVm3bl1by1h+9rOffQYqGjyWLVuW22+/PYsXL97kvnPnzs211177DFQ1eNx111350Ic+NNBlAAx6cm7nyLmdJed2jpzbWdtrztV4CQAAAAAA26Fp06bl1FNPHegyBqVLL700e+65Zw477LCBLmXQqbVm3bp1Of300zNy5MiBLmfQmTt3bqZPn573v//9A13KoDR9+vSBLgFguyDndo6c2zlybmfJuZ21veZcjZcAAAAAALAdGjZsWEaNGtXzeENLg3Uvu1ZKeaZK2+aNGDEiO+ywQ7/nt5TypHNda82QIUOe8Rq3VbXWDBs2LCNHjtzg+eXpGzlyZIYPH+67oUOGDx8+0CUAbBfk3M6RcztHzu0sObezttec6xsOAAAAAADI8uXLc95556XWmtWrV+fcc8/NwoUL89WvfjVdXV0DXd4275ZbbsnVV1+dpFmi8corr8wvf/nLXHXVVQNc2eDw6KOP5sILL9zgxVOevmXLluVf//VfU2vNqlWr8rWvfS0LFizIueee63wDsE2QcztLzu0sObdz5Fy2lMZLAAAAAAAgq1evzvXXX5+urq6sXbs21157bUaNGpWXvexlZvrYCmbPnp277rorSf4fe/cdXUWd/3/8OTe9h0AILRAlEFooJoBSFAVXF3tdXcvuumv5+tVt3/3prrp2dNfG2l0FXUEQCCIkojQVREogEAgkhBAgpFFCert9fn9A7hJAReFyIXk9zuHAnZk7857PnRlf53w+foZ9+/axZcsWEhMTSUxM9HFlbUNtbS2ZmZm+LqNNslqtfPvtt5imid1u55tvviEsLIxRo0b5ujQREZETopzrXcq53qWc6z3KuXKy9KpxEREREREREREREREBoLi4mFdeeQWHw0F1dTXNzc288sorTJkyRa8JPAW+/PJLmpqaKCwsJCEhgU2bNpGbm8sf//hHX5cm8r2Kiop4+eWXsdvt1NbW0tjYyOTJk/VsEBGRs4Zyrncp58rZSjlXToYGXoqIiIiIiIiIiIiICADh4eEMGTIEm83G+vXrMU0Tp9Pp67LajB49ejBkyBBM08TlcuF2u3G5XL4uS+QHRUREMGTIEKxWKxs3btSzQUREzjrKud6lnCtnK+VcORkamisiIiIiIiIiIiIiIgDExMQwfvx4Lr74YkJDQ31dTpuTlJTEpZdeSkpKil5reQrV19dTWVlJYGCgr0tpszp27MiECRMYN24cISEhvi5HRETkR1PO9S7lXO9QzvU+5Vw5GZrxUkRERERERERERERECA4O5uKLL8ZisRAQEMD48eOxWCz4+6sr4VRISEggOjoagG7dujF06FBM0yQgIMDHlZ39iouLWbp0KXfccYevS2mTWp4NhmEQGBjI+PHjMQxDzwYRETlrKOd6l3Ku9yjnepdyrpwsXSkiIiIiIiIiIiIiIkJoaCi//vWvMQyD4OBgfv3rXzNlyhT69u2rjqdTYPDgwZ5/JyUlERMTw5NPPsltt93mw6rahgEDBvD4448DaIYlLwgPD+dXv/qV59lw55138u6779KvXz/8/Px8XZ6IiMgPUs71LuVc71HO9S7lXDlZ+i+IiIiIiIiIiIiIiEg7VFxczNdff/2923To0IH4+HiWL19+eopqI7Zu3cqBAwdoamr6zm0cDgcXXnghVqv1B38Haa2oqIhvvvlGr1z0gsrKSgoLC3/wmuzYsSPnnHOOng0/0rZt20hMTPR1GSIibZ5yrvco53qXcq73KOd6V3vNuRp4KSIiIiIiIiIiIiLSDjmdzu/tMAUICwvDNM0f3E5as9vtWK3WH2y3iIgIrFbraaqq7XA6nTQ3N+N0On1dSpvT3NyM3W7/wWs3PDwct9utZ8OPZLfbfV2CiEi7oJzrPcq53qWc6z3Kud7VXnOuBl6KiIiIiIiIiIiIiLRD5557LldccYWvy2iTrFYrPXr0YOTIkb4upc0xTZN169Zx2WWXERIS4uty2pzy8nIqKyv1bPCShoYGX5cgItIuKOd6j3Ku9yjnepdyrne115yrgZciIiIiIiIiIiIiIkJ5eTnh4eFERkbicrkoKirinHPOwWKx+Lq0NsE0TSoqKiguLiYyMpLevXvj5+fn67LaBNM02b17N5WVlYSEhJCYmEhwcLCvy2pT7HY7BQUFnsEWcXFxrF27lvXr15OUlER8fDwDBgwADg3I2Lp1KykpKRiG4ePKRURElHO9TTnXe5RzvU85V06G/isiIiIiIiIiIiIiIiJ8/fXXzJw5E9M0KS4u5tVXX8U0TV+X1WYUFhby17/+ldzcXGbNmsX+/ft9XVKb8sILL5CZmclnn33Gk08+qVcDnkI2m43HH3+c+fPnU1hYSFpaGk1NTXz44YdMmDCB7du3U1hYSGNjI263G7fbTWVlpZ4fIiJyxvNc/c4AACAASURBVFDO9S7lXO9SzvUe5Vw5WZrxUkREREREREREREREuPDCC/n73//OXXfdxYoVK7jgggs0C9ApYpoms2fP5oYbbmDixInqqPMCi8XCxIkTSUhI4O9//zvr1q1j3Lhxvi6rTVi/fj1Op5OHH34Yl8uFYRgUFhayevVqEhMT8ff3Z+7cuSxcuJBRo0Zx4403snHjRsaPH69niIiInBGUc71HOdf7lHO9RzlXTpauAhERERERERERERERoXv37kRFRVFYWMjGjRu55JJL9Pq0U2jPnj0kJiZiGAYWi0UddV5isVjo2bMnVVVVvi6lzSgtLaV///4cOHCAf/7zn9xzzz106dKF5ORk7rzzTvz9/bngggt49tlnWbZsGc3NzWzdulUDL0RE5IyhnOtdyrmnh3LuqaecKydLTzsREREREREREREREcEwDMaNG8e0adMICwsjNjbW1yW1Keeeey6bNm3CNE3sdjtOp9PXJbVJTqeTgoIC4uPjfV1Km5GYmMjatWuJiYnhkUcewTRNHA4HFosFf/9DL9fr3r07wcHBuFwudUSLiMgZRznXu5RzTw/l3FNPOVdOll41LiIiIiIiIiIiIiIiGIbB6NGjeemll3j00Uc1U80pZBgGv/zlL3niiScoKiqiqqqKP/zhD3Tr1s3XpbUZ/v7+TJs2DYfDQUJCAsOGDfN1SW3GkCFD6NWrFw899BDx8fHY7XYCAwMJDw/HMAyCg4MJDAzEMAzPMhERkTOJcq73KOd6n3Ku9yjnysnSwEsREREREREREREREQEgNjaWBQsWEBkZ6etS2pyePXvy1ltvUVVVRUREhNr4FHvyySdpamoiNDSU6OhoDag4hQICAvjb3/5GZWUldrud+++/n7CwMCZNmkRUVBS33HILfn5+BAUF8fzzz1NWVkZ0dDR+fn6+Ll1ERMRDOdd7lHO9SznXe5Rz5WRp4KWIiIiIiIiIiIiISDvkdrux2+3HLG/pKD3eOjkxTqcTp9N5TBv6+/vTuXNnABwOhy9KO+uZponb7cbhcLTq8AwPDyc8PBxAr7c8CQ6HA5fLddz7Pzo6utV24eHhOJ1OAgMDgUPtHhYWRk5ODrfddpt+h+NwuVy+LkFEpF1QzvUe5VzvUc71LuVc72qvOVcDL0VERERERERERERE2qHVq1dTX1/v6zLapG3bthEZGcnixYt9XUqbY5om33zzDU6nk4CAAF+X0+bU19eTl5dHbW3tSe2noKCARYsWnaKq2o78/HwefvhhX5chItLmKed6j3Ku9yjnepdyrne115yrgZciIiIiIiIiIiIiIu3Q6NGj+dOf/uTrMtqkefPm0aNHD0aMGOHrUtoc0zR5+umnefjhhwkODvZ1OW3O3r17mTNnDn/4wx98XUqbNGfOHF+XICLSLijneo9yrvco53qXcq53tdecq4GXIiIiIiIiIiIiIiLtkGEYrV5hZ5ompmliGIbns2EYnlex1dbWEhsb61kv381isWCxWI5pX7fb7VmvdvxpWq7L47WvaZo0NTXhdDo9rwt0Op1UVFTQpUsXDMPANE0OHDhATEyMZhI6ju+6do/3bHA4HAQEBOha/hEsFouvSxARaReUc71HOdd7lHO9SznXu9przm2fZy0iIiIiIiIiIiIiIq3U19fz4osv4na7aW5u5h//+AcHDx7k3XffpbCwkFdeecXXJZ7V1qxZw/3338+jjz7KkiVLME3T1yW1KaWlpbz99tssX76ctLQ0z/KamhqefPJJz2AAgEmTJrF3715flHlWqq2t5aWXXvJ0+P/zn/+koqKCd999V9exiIicFZRzvUs517uUc71HOVdOlgZeioiIiIiIiIiIiIgIDoeD3NxcTNPE5XKxdetWQkNDSU1NxTRNKioqmDNnDsuXL2/VuScnpqKigkGDBnHfffcxY8YMteEp1tTUxPbt23E6nZSWljJ16lRycnIwTZOamhoyMjJIT0/H6XRitVrJyspiypQpVFdX+7r0M96Rzwan08nWrVsJCwsjJSXF16WJiIicEOVc71LO9S7lXO9RzpWTpYGXIiIiIiIiIiIiIiICwI4dO3jooYd49NFHOXjwIE1NTbz55pu4XC7y8/Pp2rUrM2bMID8/39elnpXS09N57rnnSEpK0mvrvGjTpk306tWLF198EavVyp49ewgODmbVqlWsWLGC5uZmdu3ahd1uZ/r06b4u96xQUFDA//t//4/HHnuMyspKmpqaeOuttzSwQkREzhrKud6lnHt6KOeeesq5cjI08FJERERERERERERERADo2rUrv/rVr7jtttuIjIwE8LxibcSIEYwdO5bBgwezc+dOX5Z51jr//PO5//77yc3NZd++fb4up8267LLLuOiiizBNE6vVSlJSEpdeeiljx44lLy+P0NBQbrzxRsaMGUNJSYmvyz0rdOvWjV//+tfcdtttREREYJqmXr8oIiJnFeVc71LOPT2Uc0895Vw5GRp4KSIiIiIiIiIiIiIiAISHhzNw4EAGDBhAYGBgq3W5ubls3bqVjRs3Eh8f76MKz25BQUEEBgbicDhwuVy+LqfNqKioYNeuXYSFhR13fVFREdnZ2axYsYJzzz0XQDMx/Ugtz4b+/fsf82wQERE5Gyjnepdyrnco53qfcq6cDH9fFyAiIiIiIiIiIiIiIr7XMjuKxWIhKCiIX/ziFxiGQWBgIHFxcdx+++2sWbOGa6+9lkGDBvm63LNO//792b17N8uXL+evf/0r3bt393VJbUZtbS07d+7k7rvvxul0Eh8fj8Vi4aabbqJjx4787ne/Y8uWLQwbNowJEybg5+dHdHQ0ISEh/PznP/d1+We8sLAwbrzxRgzDIDg4mJtvvtnzbBARETkbKOd6l3Ku9yjnepdyrpwsDbwUERERERERERERERFCQkK4+uqrAQgMDOSKK67gzTffZOjQocTFxXHnnXf6uMKzW9++fenbt6+vy2iTEhMTeeCBB45Zfs011wBwxx13tFp+ZCf0JZdc4t3i2oDQ0FCuuuoq4NBsVldccQWvvfYaKSkp+Pn5+bg6ERGRH6ac613Kud6jnOtdyrlysk5o4KVhGJcDrwJ+wBTTNP9x1PqewIdA9OFt/mqa5uenuFYRERERkVNOWVdERERERNqr/Px8Zs+e/b3bREREEBQUxJw5c05TVW1DZmYmHTt2pKioyNeltDmmaZKbm8vcuXM1E40XVFdXk52d/b3PBtM0iY6O1rPhJ8jMzCQxMdHXZYiItHnKud6jnOs9yrnepZzrXe015/7gwEvDMPyAN4FLgVJgvWEY6aZp5h2x2WPAHNM03zYMYwDwOZDghXpFRERERE4ZZV0REREREWnPoqOj22XHyOmwZ88e4uLi1L5eYJomMTEx9O7dm6CgIF+X0+ZUVFSwY8cOXbteokEqIiKnh3Ku9yjneo9yrncp53pXe825JzLj5Qig0DTNXQCGYcwCrgGO7Iw2gcjD/44Cyk9lkSIiIiIiXqKsKyIiIiIi7VaXLl1ISUn50d8zTbPVZ8MwvnOb461rD4qKiujRo8cJt+93tdfRy49s+/batqZp0rVrV4YNG0ZISMgJfwfab5v9GOXl5eTn5x/32tX1d/IKCwt9XYKISLugnOs9yrneo5zrXcq53tVec67lBLbpDpQc8bn08LIjPQncbhhGKYdmAHrwlFQnIiIiIuJdyroiIiIiIiKH2e12NmzYgGmaOJ1OsrKyqK+vZ/HixbjdbuBQh9S0adMoLi7m9ddfx2q1Hndfubm5pKenez47nU4WLVqEzWY7LedyJtq7dy+7d+8G/jvbSkFBATk5OXz22Wds2bLFs219fT1Lly5l9+7dzJo1y7Pc6XTy+uuvY7fbT3v9ZzLTNNmwYQOfffYZX331FXV1da3W5+TksHDhwmO+19LORw+ykO82depUDhw44OsyREREfhTlXO9SzvUe5dzTRzlXfooTGXh5Im4F/mOaZg9gIjDdMIxj9m0Yxj2GYWQZhpFVUVFxig4tIiIiIuJVyroiIiIiItIu1NfX8+qrr+JyuWhubmby5MkAREYeegmA1Wrl4MGDbNy4kdraWjIzM6mtraWyshLTNHG73ezbt4/m5mYOHDjAtm3bOHjwIFarFcMwiIqKatezh6xbt45FixYBsGXLFj799FNCQkIICQlh+/btlJeXc+DAAZxOJ/7+/kRGRlJTU8PmzZuprKykqakJl8vFmjVrqKuro6qqSh2pR3j33XdpaGigqKiIv/3tb9TW1uJyuThw4AAlJSVs374dh8OBzWZj//79rdpZvp9pmjQ3N3Pw4EE2bNhAY2MjVquVffv24XK5sNlsmKaJw+HAbrfjdDoxTRO73e4ZzCIiIuJLyrnepZzrXcq53qOcKyfrRF41XgbEH/G5x+FlR/otcDmAaZprDMMIBjoBrYYCm6b5LvAuQGpqqp6SIiIiIuJryroiIiIiIiJHaGhoYOvWrVitVmw2Gw6Hg/nz55OUlMSTTz5JaGgomZmZ/Pa3v6WyspKXX36Z8vJyHn74YbZv305BQQH9+vUjOjqapUuXejqrJ02aREZGBv369SMwMNDXp+kzZWVl5OTksGvXLkzTpLi4mMLCQtxuN9OmTSM9PZ3k5GRuvfVW5s+fzw033MCqVaswTZOGhgYmTZpERUUFL730EiUlJTzxxBMkJSX5+rTOCH5+fowYMYJzzjmHsrIyMjMz2bFjB3v27GHHjh2MHj2a6dOns2LFCsLCwlq1c2pqKn5+fr4+hTNWTU0Njz32GBEREWzcuBGbzcbzzz9PZGQkP/vZz0hPT+eKK65g4cKFJCUlYbPZuOmmm3jqqad46KGHiIqK8vUpiIiIKOd6mXKu9yjneo9yrpysE5nxcj3QxzCMcwzDCARuAdKP2qYYGA9gGEZ/IBjQND8iIiIicqZT1hURERERETnCvn37+Oijj5g1axZ1dXW4XC5KS0vZsGEDCQkJPPvsswwYMACA8PBw/vznP3PTTTfx7bffUlpaSkhICOeffz6GYTBixAhPB2p1dTVlZWW4XC4fn6FvrVu3junTp7N06VLcbjcNDQ0cPHgQwzC47rrrePrpp1mzZg12u52yskP/X2BycjLPPvssLpeLffv2ERkZyV/+8heuuuoq1qxZ4+MzOvMYhkFsbCx79+5l48aNPP3009xyyy0YhkFlZSVXXnnlMe2sGZW+X2ZmJoMGDeKZZ56hb9++nnZLSkqid+/eXHXVVTz44IN069aNcePG8eWXX5Kfn4/NZiMiIsLX5YuIiADKud6mnOt9yrmnnnKunKwfHHhpmqYTeABYDGwD5pimmWsYxtOGYVx9eLP/A+42DGMz8DHwa1N3r4iIiIic4ZR1RUREREREWktMTOQf//gHzzzzDJ06dfIsd7vdnlcptsyYEhQURFhYGAEBATidTu677z769evHX//6V+x2O9HR0fj5+WEYhjr8Drv22mt58cUXuffee7FY/ttFYxiGp73cbner9oqKisLf3x+LxYLb7SY4OJjQ0FBPu8t/tbwqcOvWrSQmJmKz2XC73fj7H3oB3Pe1s3y3I+9/i8VCeHg4kyZNYuPGjUyfPp3m5mbCwsKoqamhQ4cOxMTEMHXqVCZOnNjqOhcREfEl5VzvUs71LuVc71DOlZN1Iq8axzTNz4HPj1r2+BH/zgNGn9rSRERERES8T1lXRERERETkED8/Pzp37uzpdIqLi8MwDABSUlKYO3cuzzzzDHv37iUwMJDOnTtjsVgIDQ0lKiqKefPmkZ+fT0JCAuHh4URHR2MYBp07d9br7cDTTgAhISFER0cDhzpJo6KiCA0NPabdAwMD6dixIwCdOnVq1e7h4eHtfmalI0VERPDuu+9imiajR49m5MiRrF69mqeeeor9+/czZswYgOO2s3y/kSNH8sknn/DMM89QWVlJc3Mzs2fP5sCBAwwdOpT58+fz9ttv89Zbb7Fv3z6uuuoqXnnlFc477zxfly4iIgIo53qbcq53Ked6j3KunKwTGngpIiIiIiIiIiIiIiJtW1RUFM8884ynk/nZZ59lw4YNdOrUiZiYGF577TVcLhd+fn4EBgby3HPPERwczNixY3G73bjdbux2OyEhIRiGwfDhwzEMg6eeeoqioiIMwyAsLMzXp+kz48aN88w8M3z4cPr168e7775L3759mThxIn5+fvj5+XleDxgXF8eAAQPo27cvAI888ggBAQE8//zzBAcHM378eM1kc4Qnn3wSh8NBQEAAwcHBGIbBn/70J5qamggMDPR0Ph+vnTVg4vvFxMTwxhtvtLr/ExISME2T0NBQLr30UoKDg3n22Wfx8/OjS5cuDB8+nJCQEF+XLiIiAijneptyrncp53qPcq6cLA28FBERERERERERERFph2w2G7W1tccst9vtwKHXrlVUVHDHHXdQX1/vWe9yuTzbtPx9pKamJs+/rVYrACUlJdxxxx3Y7fbjfqetaWpqorGx8bjt29zcDEBdXR3dunVjxIgRnnaCQ+1bVVXFbbfdRmNjI3Dotzry7yPbsGV/7YVpmthsNurq6o57LR3vGmtptyMd2c51dXVeq/dsU19fj9VqPe61C63vf4CGhgbg+M8Ch8PhnSLPYu3tfhUR8RXlXO9RzvUe5VzvUs71rvZ2v7YwfDVKPDU11czKyvLJsUVERETOJIZhbDBNM9XXdcipo6wrIiIicoiyrrQVbTHj19bWMnnyZPz9NT+DNzQ2NuLv709QUJCvS2mTqqurPa/4lFPL5XLR0NDgeV2onFpWq5Xf/e53JCQk+LqUUyo1NZWsrCzdkCJnIeVc+bGUc71LOdd7lHO9q73mXP2XRkRERERERERERESknYmMjOSJJ57wdRkiIiIiIqeUcq6IiJwuGngpIiIiIiIiIiIiItLOaAYVEREREWmLlHNFROR0sfi6ABERERERERERERERERERERERERGRs4UGXoqIiIiIiIiIiIiIiIiIiIiIiIiInCANvBQREREREREREREREREREREREREROUEaeCkiIiIiIiIiIiIiIiIiIiIiIiIicoI08FJERERERERERERERERERERERERE5ARp4KWIiIiIiIiIiIiIiIiIiIiIiIiIyAnSwEsRERERERERERERERERERERERERkROkgZciIiIiIiIiIiIiIiIiIiIiIiIiIidIAy9FRERERERERERERERERERERERERE6QBl6KiIiIiIiIiIiIiIiIiIiIiIiIiJwgDbwUERERERERERERERERERERERERETlBGngpIiIiIiIiIiIiImctwzCiDcOYaxhGvmEY2wzDuMAwjBjDMJYahrHj8N8dDm9rGIbxmmEYhYZh5BiGcZ6v6xcRERER+S7KuiIiImcuDbwUERERERERERERkbPZq8Ai0zT7AUOAbcBfgS9N0+wDfHn4M8DPgT6H/9wDvH36yxUREREROWHKuiIiImcoDbwUERERERERERERkbOSYRhRwIXAVADTNO2madYA1wAfHt7sQ+Daw/++BphmHrIWiDYMo+tpLltERERE5Acp64qIiJzZNPBSRERERERERERERM5W5wAVwAeGYWQbhjHFMIwwIM40zb2Ht9kHxB3+d3eg5Ijvlx5eJiIiIiJyplHWFREROYNp4KWIiIiIiIiIiIiInK38gfOAt03THAY08t9XLQJgmqYJmD92x4Zh3GMYRpZhGFkVFRWnpFgRERERkR/BK1lXOVdEROTU0MBLERERERERERERETlblQKlpmlmHv48l0Od0/tbXqt4+O8Dh9eXAfFHfL/H4WXHME3zXdM0U03TTI2NjfVK8b5mmiaNjY24XC42bNiA3W7/zu02bdpEU1OTZ5nb7WbNmjVkZ2dTUVHBF198QUVFBVVVVZSXl7Nnzx7PtlarlY0bN3JoXMB3czgcbNiwAYfDQUVFBbW1teTm5rY6ZlZWFk6n07PMbrfz1VdfUVhY6FlWWFjIgQMHOJ6dO3eyf//+VueWl5fHihUrcLlcx2zvcrnIysrCbrdz4MABGhsb2bx583eei2ma7NmzhyVLlmC1Wluts9vtbNiwAbfb/b3t0HLM49VzPPn5+VRVVbWqYefOnSxbtoytW7dSWVl5QvsBcDqdZGVl/WCN3/f9b775hry8vJ/0/dOhtLSUxYsX09TUhN1up7q6mubmZlwuFzU1NVRXV9PY2Oj5je12O/X19Zim6dm+qakJ0zSpq6ujurr6mGU1NTU/ug2P97vX1dXR2NiI1Wpl6dKlFBUVedYd/bu3KCoqory8/Kc1zgnYt28fu3bt8nxuua5b2ss0Taqrq7FarTQ0NLBo0SL27t37Xbv7SY537g6Hg6+//pqCgoJTeiwRER/zStZVzm29nXKucu6Jfl85VzlXOVeOpoGXIiIiIiIiIiIiInJWMk1zH1BiGEbS4UXjgTwgHfjV4WW/AhYc/nc6cKdxyPlA7RGvaWx33G43f//736mqquLVV1+loaGhVUeraZqez++88w4VFRWeZSUlJXzwwQeEhITw3nvvUVVVxd69e1m+fDmrV69m6dKlnm1ra2t54403cLvdrTqtjty/aZo0NTUxefJkampqyMjIoKioiA8//NCzncPhYPLkyVitVs/3NmzYwOLFiwkMDPRsN3/+fHJyco45BsBnn33m6Rw3TROr1crLL79MYGDgMefccsxXXnmF2tpa5s+fz969e3nnnXc8648+F9M0mTx5Mi6XC4uldRdMY2Mj//rXv3C5XN/bDjabjVdeeQW73X7c9Ud3hs+aNYsdO3Z41rlcLl5++WUMw2Du3Lnk5+cf93tHM02T5uZmJk+e3KrT/3jbfVdN27dvJy0tjaCgoO891g/Vcbz9f9fn7/r+8bjdbl577TVsNhsNDQ08/vjjvP766yxatIiSkhL+7//+j7fffpvly5d7tn/99df53//9XxwOB++88w6vvvoq99xzD5WVlaSlpfH222/z2GOPMXnyZJYsWcKTTz7JE088wfz580/o/FqWHf27A6xfv57t27ezcuVKvv3221bXecvvfvQ+lyxZwtq1a0/oN/+huo63bsOGDXz22Weez/X19bz66qutrusVK1ZQUlJCeno6ubm5BAQE/Ojf8XjbHH3uR67Pzs5m4cKFJ3XtiYicaZR1fzrlXOXcIynnKucq54q3+Pu6ABERERERERERERGRk/AgMMMwjEBgF/AbDk06MMcwjN8Ce4CbD2/7OTARKASaDm/brlVWVuJyubDZbHz00Ufs37+f3//+9zgcDmbMmEFTUxMXXHABTqeTefPmsW/fPu677z4WLVrE7t272bVrF4sXL2bixImMHTuWkJAQz2w5jz32GKNHj+a8887j4MGD/Otf/8IwDO6//37Wrl3LypUrufLKK+nRowdTpkzB7XbT3NxMUFAQkZGRmKZJcXExkyZNolu3btxyyy00NTXx/vvvc/DgQR544AHmzZtHaWkpDoeD9PR0srKy2LNnD0OGDGHlypWsWLGCiRMnkpKSAhzq0Fq1ahWrVq3isssuw+12s3nzZg4ePEhWVhZLlixh/PjxDBw4kPfeew+bzUZ9fT2BgYF06NAB0zTZt28fL7zwAmFhYdxzzz2sX7+eZcuW4efnx7Bhw1i1ahWDBw9m3bp1xMXFER8fz8KFCxk3bhw1NTW88cYb2Gw2HnzwQXJycli2bBk/+9nPSEpK4r333sNut9PQ0EBTUxPTp0+ntLSUyy67jIEDBzJt2jQOHjxIv379uOWWW7BYLLjdbr788kvS09O5/vrr8ff3JzMzkzFjxmAYBl999RULFizgF7/4BVVVVaSmprJ7926am5tJSUlh2bJljBw5kqlTp+J2u2lqaqK8vJySkhJSU1NJS0vjF7/4BVlZWcTFxfH1119TUlJCfHw8N910E7NmzaK8vJxevXpRVlbGnj17qK+vZ+7cuVx33XWewQG7d+/m6quvprCwkLKyMtxuN5dccgmzZs3i6quvZvfu3QQFBVFVVcWSJUvo0aMHt99+O9nZ2SxZsgSLxcLNN99MYWEh69evp3fv3qSmplJXV8fw4cPJyMhg8ODBpKenU11dzc0330xwcDDl5eWMGjWKBQsWkJiYyIoVKzj33HNZtmwZSUlJXHvttURGRrJ7924GDRrE3XffTVhYGABbt26loqICt9uNxWLhnnvuwTAM/ud//oempibuuusuAJ5//nlGjRpFZmYmY8eOJSYmhszMTEpKSti5cycXXXQR6enpjBs3ji1btrB06VJ69erFrbfeSnp6OsXFxaSkpNDY2MjUqVOpqanh/vvvp2PHjjgcDubNm4fNZsPpdJKWlsbWrVspKCjgsssuY86cOVRUVFBaWsqDDz4IQGZmJtnZ2Vx88cWEh4cTGRlJYmIi6enpTJw4kcDAQDIyMjj//PPJz8/nnHPOoaioiC+++IILLriAq666CsMwPPdMfn4+s2bNonv37nTu3Jnc3Fz+/ve/k5qaypgxY6iurubNN9/E4XBw3333ERsbS3NzM/Pnz6d79+7YbDamTp1KcXEx3bt357bbbuPTTz8lLy+P6667jt27d3PllVeybNkyLr30UkJDQ9m8eTNr165l165dTJgwgUsuuYRPPvnEc+6XX345X375JWvXruXKK6/k008/pbi4GIfD4YMnqYiIVynr/kTKucq5yrnKucq54m2a8VJEREREREREREREzlqmaW4yD70qcbBpmteaplltmmalaZrjTdPsY5rmBNM0qw5va5qm+b+mafY2TTPZNM0sX9d/prBarfTv358+ffqQnp7O9OnTufDCCwkNDcXtduNwOOjevTtjxozh448/ZsCAASQlJTFy5EgSEhIYN24cdXV1LFmyBDj0Wrbf/OY3zJgxg+bmZurr65k4cSJlZWVs2rSJ6dOnc91119GzZ09mz57NgAEDGDNmGOuyYgAAIABJREFUDFarFavVyvz583G73dTX1/PLX/6SlStXsm/fPpqbmxk2bBidO3fmyy+/pH///px33nlYLBYWL17Mvffei9PpxOl0Mn36dK655hoSEhI852maJn5+fvz2t7/l3//+N126dKFnz56kpqby4Ycf8vOf/5w+ffqQkZFBXFwcl112Gc3NzZ5OQafTSX19Pddffz15eXnk5eUxbdo07rnnHnbs2EFSUhLx8fFceOGFrF+/nsLCQmw2G/PmzcPlctHQ0MD48eNpbGxk3bp1fPjhh1xxxRX07t2b+fPn06NHDyZMmEBzczN+fn6MGTOGW265hffff5/09HTi4uIYNGgQVVVVng5Dt9tNaGgod955J6+//rqnE3zMmDEAhISEcPPNNzN16lQKCwtZtWoVGRkZvP/++2zdupWcnBzmzp1L3759GTt2LFarFT8/Pz766CN27tzJa6+9xvbt25k5cybZ2dk0NzczYcIE9uzZw+rVq7FYLIwdO5by8nKSk5MZNGgQXbt29ZxzdnY2BQUFrFy5kl27djFz5kz8/f2ZNWsWJSUlvPnmm2RlZTFr1iyam5t58803ufzyyyksLGTlypV8+OGH3H333ezcuZOIiAgSExO5++67WblyJRUVFXz44YdUVFSQnp5OREQEl19+OZdeeikffPABu3fvZtWqVZimyYIFCwgPD6dnz55cdNFFFBQUsH79eiZNmsRLL71EUFAQRUVF/OlPf2LKlClYrVZmz57Nbbfd5pnVKS8vj/vvvx+73U5MTAyGYbBv3z62b9/O+eefz80338zbb7/N888/zxVXXEFpaSkrVqwADs1CVVZWxltvvcXEiRPZtm0bWVlZzJw5k759+5KcnExjYyMjR47knHPO4eOPP2bLli3k5+fTr18/RowYQXNzM6tWreLuu+/GZrNhmiZpaWkkJCQwZMgQ5s6d65k153e/+x3vv/8+jY2NTJ8+neLiYr788ksCAgIwDIOoqCgef/xx0tPTsVgs/Oc//+HBBx+kd+/erWbnaZmB69Zbb2XMmDG43W6sVit33XUXaWlpNDY20tDQwIQJEwgICODzzz9nzZo1lJeX06dPH0aPHs327dupq6vj8ssvp6ioiKysLHbv3s2DDz5ITEwM5eXlPProo5SVlREcHAxATk4OeXl5/Pa3v2XatGmea7fl3G02GzNmzOCGG26gZ8+eDBgwgKFDh9K9e3fvPixFRE4zZd2Tp5yrnKucq5yrnCveooGXIiIiIiIiIiIiIiLtXGRkJCkpKfTs2ZOqqipCQkJIS0ujoqKCQYMGERwczMiRI+nVqxfV1dVERkYSERFBTEwMYWFhxMbGtnrl4PDhw+nZsycATqeThIQEkpKS6NSpE83Nzdx77728/fbbfP755xQWFpKUlMTQoUOJiopqVdeAAQM455xzCA8Pp6mpiZiYGIYNG0Z8fLynjg4dOlBXV0dERATdu3dn2LBh+Pv7c++99/Lee++RkZHh6WAzDIORI0cSHx8PgJ+fH6GhocTGxnLffffx0UcfMXfuXAoKCujbty+DBg0iNja2VU2JiYkkJibSoUMHmpubsVqtTJ06ld69e9O1a1dCQ0Pp1KlTq/ZoOX737t0ZMGAAcXFx1NfXc9999/Hhhx8yb948duzY4emY7NSpE1VVVUyZMoX169dTUVFBaGgoS5YsISsri1GjRnk6pP38/Dj//PPp1asXVqsVf39/QkND6dixIxaLxbOusbGRcePGsWLFChobGwkLC2PhwoWMGTOGwsJC+vbty9ChQ+nQoQOxsbFERkaSkZHBDTfcQHp6OiEhIcTHx7NmzRoWL17MuHHjiIiI4JtvvuGrr77ioosuIioqiqioKEJDQ1vNJGMYBuPHjycjI4PKykpGjhxJYmIic+fO5eqrr2bZsmXU19cTFRXF/v372bBhA127dqVbt26eWWQSEhKIjIxkzpw5LFq0iAMHDhATE4PFYmH+/PmMHTuW/fv3M2XKFM8MPi01tAgODvb83iEhIdx666089dRTFBYWEhsby+TJk3nuuefIyMhg5cqV5Ofns2DBAvLy8sjKyiI5OZkXX3yRrl27snLlSs8rPy+//HKCgoKYMWMGDz/8MH/5y1949913j3l1YE1NDRUVFWRlZdGjRw86d+5MVFQUo0aNIjw8nNjYWAYNGkTfvn0pLS0FwGKxEBERQYcOHaisrKRjx4706NGD5ORkAMLCwkhNTfXcm4ZhMGLECHr06IG/vz8JCQmUl5eTnp7O5ZdfjsViwTAMBg8eTHZ2Nn379sVmsxESEkLXrl0ZMGBAq3ZzOBw0NDSQkJBA//79CQoK8jwrLBYLDoeDHj16kJSURJ8+fTx1+/n5ER4eTseOHYmOjiYzM5PPP/+ccePGUVpayrnnnkvXrl3p3bs3o0ePZuHChZx//vmtjj1ixAh69uyJy+WipKSk1bkHBQVx991389prr7Fs2TIiIyOJjo4mJCTkBJ96IiLSXijnKucq5yrnKueKt2jgpYiIiIiIiIiIiIhIO9PU1MTnn3+Oy+UiODi4VSeQYRg0Njbi7+9PfHw8TqfTs94wDE9H65HLjnT0vo7+2+VyUVtby3nnnceWLVtITU1l5syZzJw5s9UMN0cfq+XPkftu+dyrVy+Ki4vJyMhg2bJluN1uqqurSUlJYcuWLa3q++STT/j4448JDAwkIiICwzBwu90cPHiQESNGsGXLFkaMGMGcOXM8rxc83vm1nIvb7QYgPj4eh8PhWT9w4ECWL1/e6ryO/K5pmlRWVjJ8+HBycnIYPnw4s2fPZtasWezdu5eysjKampoIDw/H5XJRX19PUFAQcXFxnu/DoZmAZs2axUcffeTpaD3yOEf+OyEhgdzcXGJiYhgyZAjffvstQ4cOZcSIEcyaNYuZM2dSUVGBxWLhvPPOY/78+dxwww188cUXjBo1isbGRoKDg4mOjiYoKIi6ujqCgoLo2LEjAQEBnuOEhIQQHR3NggULWLhwIYZhMGbMGNLT0+nfvz/BwcGMGjWKadOmcc0115CdnU3//v3p1q0b/fv3p3PnziQkJBAREeFp3549e9LQ0EBubi49evTAZrPh5+fH+PHjeeeddxg3bhw7duwgKCgIf39/TNMkISGBgoIC5s6dS35+fqvfb8SIESxYsICMjAwiIyPJz89n0aJFpKen069fP8aMGcMbb7zB9ddfz7nnnkuvXr2YOXMmWVlZ1NTUEBcXR2NjI6tXr+ayyy4DoKamhsLCQioqKggKCiI+Pp6ioiLmzZvH1q1b6dy5M3379qVLly706tWLqKgoTwcxwN69ez2/5fDhw4+51hMTE8nLyyMjI4NvvvnGc48cfZ99+umnzJkzB5fLRZcuXRgyZAjp6elccMEFnut9+vTp/PnPf2bNmjU4nU7q6ur45JNPmD17tqfN4VAnfpcuXZgxYwbTpk2jsbHxmOMVFhaSlpbGJ5984nnd6ZF119fXExwcTFRUFMHBwSQnJ7Ns2TLmz5/P4sWLmTFjBq+88gpTpkzBbrcf99o9+txbZuUaMmSI5x4/+lkkIiLtk3Kucq5yrnKucq6cLsaR06ieTqmpqWZWlma2FhERETEMY4Npmqm+rkNOHWVdERERkUOUdaWtaIsZ3+FwsHbtWjp16kRSUhJbtmxhwIAB1NXVUVVVxauvvsott9zC/v37Wb9+Pbfffju9e/fG6XRSVlZGt27d2Lt3L3379iUvL8/T0fn5559z3333eV7ZmJOTQ58+fdi5cyfJycns2rWLqKgodu3aRU1NDeeddx5hYWGsXbuW0NBQAgICiIuL4+mnn+af//wn+/btIykpiW3bthEfH8/OnTsZNGgQlZWV2Gw2AgMDPTOR5OfnU1ZWRnR0NL169aKoqIjq6mqGDRtGp06dMAyDoqIiKisrqaqqIjk5mY4dO5KXl0dycjKbNm3i4MGDnuVr1qwhMDCQgIAAEhISeOihh5g8eTIlJSUMHDiQHTt24Ha7mTx5Mg888AAff/wxF154oWc2FdM0WbduHQEBAQQEBDBo0CC2bdtGcnIyJSUlBAcHU1paSmVlJYMHD6ZDhw6sXbvWc8zBgwezceNGnE4nISEhfPbZZwwbNoyoqCg++OADpk6dip+fHzt27KCurs5zrtHR0WzZsoXk5GR2795Nx44dCQsLIz8/n+TkZHJycoiNjSU4OJji4mKGDBmCzWZjzZo1hISEEBAQwLBhw6itraWgoICUlBQ2bdpEUlKSpyN/0KBBvPTSS55ZmXr37s2rr77KSy+9hNVq5ZxzzqGsrIxt27YRExNDt27d6Ny5M/feey9/+9vf6N27N42NjWzatIkRI0aQl5dH9+7d6dixIxUVFWzatInAwEASEhKYNGkSv//970lLS2PEiBH06dOHsrIyQkNDGTRoECUlJbz22mu88cYbOJ1OMjMzCQgIICwsjIEDB7J582ZPR3pycjIFBQX069cPPz8/1q9fT2NjI+eddx4Oh4PNmzfj5+dHSkoKkZGRGIaB3W5n27ZtDBo0iNzcXPbu3UvPnj1JSkqiubnZc20bhkFlZSXZ2dkADBs2jA4dOpCTk0NdXR3BwcEMHjyY2tpaNm/eTFBQEMOHD6ewsNBTT3Z2Ng6HA9M0SUlJ4T//+Q/dunVj2LBh+Pn50aVLF7Zu3cqBAweIjIwkMTGRkpISkpKSaGpq4uDBgwQFBVFRUUFVVRUDBw6ka9euVFdXs3PnTlJSUrBYLLhcLnJychg4cCClpaWEh4djtVrJz8+nd+/enHvuua06d1vOKzY2li5dutDc3EyvXr3IycnxdBTbbDaCgoIYMmQIL7zwAhMmTCA2NtYzMME0TYYOHcoLL7zAlClT2LlzJwcPHiQpKYnq6moGDhxIbm4uffv2JTg4mLKyMgzDIC4uji1btnjun5Zz7927NwUFBdTX15OSkoLD4cBms3lmIJPTKzU1laysLI0IEDkLKecq5yrnKucq5yrnynf7oZyrgZciIiIiPqbO6LZHWVdERETkEGVdaSvaW8Z3u92kpaWRk5NDUFAQN9xwwzGvZTtaXV0dL774IldeeSUjR478ycd2Op28/vrr9OrVi+uuu+6MmNnD7Xbz3nvvERISwh133NGqpsbGRt544w0aGxuJjo7mrrvuIjo6+pTXYJomX3/9NcuWLSMwMJDx48czZsyY094+GzduJC0tjcDAQEaOHElMTAwLFiwgMDCQ0aNHc+mll35nTXV1dUyZMoXf//73+Pv7n9DxmpqaeOONN6ivr/e0b4cOHVpts3z5cpxOJ+PHjz8jrpdTpbCwkHfeeYe//OUvdOnSxdflnLBNmzbx8ccf88gjj3heqbpp0yZmz55NYGAgw4cPZ+LEia1eUSpnPw28FDl7Kecq5yrnHqKce/oo58rZRAMvRURERM5w6oxue5R1RURERA5R1pW2oj1mfNM0Pa/4O/rVh9+3/Ylsezr2cyr9UE2nq+Yf+5ucjhpalp1ITT+1nU6k/Y+sp604E++FE3G8us+Ea1e8SwMvRc5eyrnKucq5x6+hZdmJ1KSc++OciffCiVDObZ9+KOee2FBrERERERERERERERFpN35sp9Gp6mQ6Ezurfqim01XzmdA2x6vhRGv6qfWfSPu3RWfC7/1TfNc1cjaei4iItE3Kuf+lnPv9NSjneseZ8Hv/FMq5cjya31RERERERERERERERERERERERERE5ARp4KWIiIiIiIiIiIiISDvW3NzMJ598gsvlYuHChcycOROn0+lZn52dzdatWz2fq6urycjI8LxSzTRN8vLyaGho8Gyza9cuvv3221bHcbvdfPrpp6SlpeF2u39UjW63+7jf2b9/P0uWLDnud/Lz81m3bt2POg6AzWZj7ty5uFwuz7KsrCzy8vI8n+vq6ti2bVurNmjZvrKyktdff528vDysViu5ubkUFBTQ1NTE1q1bycnJYcuWLdTV1R33+A6Hg7lz5+JwOPjqq6/44IMPsNvtP+ocVq5cye7duz2fm5ub2bJli6feo5mmyfz586mvr2+1LCMjg5qaGs+yyspKCgsLT6gGp9PJ3Llzj6n9eMfyhhUrVlBcXOz53NL+R7dBaWkpBw4c+MH97dq1q1VbHM1utzN37txW947b7SYnJ4eGhgbPb9riyy+/pLy8/MecEqZpsmDBgu+8dr7PqlWr2Llz54/+XovCwkJWr179k79/qrRcP5WVlcfcp4sXL2b//v2ez0ffp0drbGzk008//dHPo+9TUFDA2rVrT9n+RETk5Cjntqac+99lyrn/pZyrnHsilHOPTwMvRURERERERERERETaIdM0cTgcNDQ08Omnn1JbW0taWhoXXnghFouF5uZm3G432dnZ5ObmYrVacbvd1NTUsHDhQhwOh6fzraysDJvNhmmaWK1Wdu3axapVqzyfXS4XVVVVZGRkMGbMGM/xv++P1WrF6XRimiZpaWlkZmZ61rV8f//+/SxduhS73e7pmGr57rZt28jKymp1vkfus+VPS2d3y2ebzca8efOw2WzY7XZM02Tjxo1s27bN0wbNzc3s3bvXs9+ioiLefPNN3G43ixYtIigoiG7duvHiiy+ydOlSsrOzqaurY8uWLWzevJnHH3+cDRs2YJqmp51bfo+WAQINDQ1Mnz6diy66CD8/vx9sL5vNhsPhwDRNvv32W4qKirBarZimid1up7S0FDjUUdxyHi0d6TabjfT0dBoaGnC5XFitVgA+++wzqqurPftpbGxk//79xxy7pQ1b9tlyjHnz5mG323G73djtdk/bp6enU1dX57lmjmz/I3//IzsbW7Zr+c6R+ztym5b2/OabbyguLj6mDY4+TlVVFVVVVT/YvhUVFdTV1R13ncPhoKmpiXnz5uF0OnE4HNhsNgBKSko8v+mR19RXX31FWVmZp77vugdcLler3ykjI8PTId3SJk6n07PfI++PlvVWq5XVq1eza9cuz/V7vE7Yo6+jlvNwu93s3LmTNWvWeD4fr1673e6p47vu8ZZtvmsfJ9IG6enpVFZWHnOfLl26lAMHDnja9Oj79Og66urqmD9//jG1u91uHA6Hpx2Od319V60FBQU/aSCMiIicWsq5yrnKucq5Rz8TlHOVc73B39cFiIiIiIiIiIiIiIjI6VdQUMBbb72FYRg0NDTw7bffsnHjRlatWoXFYmHLli2MGzcOgIULF5KZmUn//v0ZP348O3bs4PHHH8fhcPDMM89QXl5O7969+eabb1i+fDnV1dUMGDCAVatWsWjRIgYOHIjFYiE7O5uvvvqKiooKHnjgARYtWkRUVBSZmZn84Q9/YMWKFQQFBeFwODwzpVx//fWkpaURFBTErl27CAoK4vrrr+edd94hKSmJnJwcHnnkEUJCQnjsscf45JNPWLduHfv27ePCCy8E8HQAZmRk0KlTJzp27MjPf/5zwsLCmD17NoGBgYwdO5asrCyGDBlCRUUFzz33HBUVFTzzzDMAZGRk8O2335KcnMzll19OQUEBF198MQBffPEFM2fOJCIigkWLFuHv78+AAQM4ePAg1157LXFxccTGxnLrrbdSXV3NihUrSElJ4ZNPPiEnJ4dx48bRp08fXnnlFQzDoKqqiqysLLKyspg/fz5+fn488MADLFiwgC5durBmzRr++Mc/smjRImJjY3G5XMybNw+LxcJvfvMbTNNk9uzZzJw5kyuvvJJx48axfft2UlNTeeutt6isrCQmJoYHHniAl19+Gbvdzq5du7DZbEyePJmmpibuuOMO7HY7//73v6mtreX222+nS5cuFBYWsnnzZm688UasVitLliwhJCSETZs20aFDB371q1/x8ssvA3DgwAGqqqp49NFHCQgIwOl08vTTT2O1WnnzzTeprq7mN7/5DUVFRfTs2ZP9+/fTs2dPiouL+frrr/n/7N15lFTlnf/x9629unpf2Vr2ARRZpAEBEQiyRCU66pCZqNH4y6CJCxm3EHWCiiiK6LhFIy4gGoMgCAQEEVF2wiqyyNrQLN10U91Nb1XdtdzfH9g3dMREjFK9fF7ncLqqrLr3e5cqP+c8z/k+2dnZ3HXXXTidTpYtW8bChQsJBAJkZ2dTXl5OdXU1TzzxBB6Ph2g0yvTp09m6dSs9evQgEonw7rvvMn36dK666ioGDBjA7t27KS0tpVu3brRq1Yo33niDdu3a0axZMxYsWEDLli3p0qULL7/8MoMHD2bnzp10796dPXv2UF1dTVJSEs899xw333wzBQUFbNmyhf79+/Pss89iGAYlJSWUlJTwxz/+Ea/Xy5gxYzh48CBdu3aluLiYSZMmcfz4cR555BGi0Shvv/02kUiEESNGUF5eTq9evcjKymL69On07NmTjz76iAsuuIArrriCSZMmUV1dXacTUzAYZPz48QCcPHmS22+/nTVr1jBmzBjee+89unbtyscff8yhQ4fYvXs33bt3589//jO7d+/msssuY+DAgda2TNNkzZo1zJ49m8TERG666SamT5+O3++nefPm9OzZk1WrVnHo0CFat27NkCFD2LFjh3V+OnfuzJtvvonD4eDee+8lIyODjz/+GK/XS69evXj55Zf58Y9/zDvvvMOJEyfo3r07HTp0wOPx0KdPH1544QVSUlK49NJLSUtL45133uHCCy/k448/plu3bowYMYJJkyZZ9ypAUVERTz75JH6/n9/+9rdEIhHeeOMNTp48yc9//nM6derEnj17OHjwID/60Y/w+XzMmjWLgQMHMnXqVAzDIBAIcPToUaZOnUpqaio33HADkyZNwm63U15ezsSJE0lNTcU0Td577z127tzJxRdfzK5du7jjjjtYv349wWCQ4uJi1qxZQ1FREX379v1hf7xFROSfUs5VzlXOVc6tpZyrnPtDUsdLEREREREREREREZEmpnZw5frrr+fWW2/FZrORk5PDhRdeyJVXXsmKFSu45JJLyMnJAaBr165MmDCBlStX4vf7SUpK4ne/+x2GYbB//3527drF8ePHWbhwIY888og1kL169Wo6duzIsGHD6NevH927d+faa69l79695Obm8pe//IXMzEw2b96MaZrk5eVx9OhR5s+fz6233kp6ejodOnSgX79+/PSnP2XEiBEsXLiQo0ePsnnzZpKTk8nIyGD8+PEUFhaye/duli9fzoQJE+jXr591vNXV1cyYMYMHH3yQX//617Ro0YL58+ezcuVK3G43/fv3Z9y4cezbt4/zzjsPl8vFr3/9a7p27cq6deswTZPu3bszYcIEli9fztGjR/niiy+s7V9yySX06dOH66+/nv79+3PttdcSDoc5ePAga9euZezYsRw9ehTTNFmyZAk5OTn4fD4+++wz6zzPnTuXyy+/nLFjx+J0OunevTvnn38+t9xyCzt37iQvL48PP/yQ9PR0tmzZgmma5ObmcuzYMV577TW6detGy5YtmTNnDgAXX3wx//u//8v8+fMJBAJs2bKFDRs20Lx5c37605/idrtZt24dbdu25aGHHiIxMZGysjK2b9/Ov//7v9OiRQsARo0axT333MNbb71FaWkpX375JUlJSSxZsoSlS5eSkpLCf/zHf5CZmUnPnj1ZuHAhQ4YM4d5778XtdhMMBsnNzeXBBx8kLi6OL7/8EsMwuOaaa7jrrrt466236NevH5MnT2b58uW0atWKOXPm8Oijj3LzzTdjs50aysrLy6N58+Y89NBD7Ny5k9/+9rd4vV5KSkqAU92o1q1bx5NPPsmoUaMwDIP+/fvz4IMPMm/ePILBIFu3bqVVq1bMnj2bjRs3EgqFyMvLo6CggAMHDlBYWEgoFGLz5s106tSJ1atX8+STT3LxxRezZ88eiouL2bp1K9XV1ZSUlLBnzx7ef/99rrrqKu666y4cDgd5eXn4/X6uu+46EhIS2LZtG4FAAKfTyZgxY+jbty8rV64EYNCgQYwfP5733nuPjIwMazJFNBpl7dq11ndnzZo1tGrVit///vckJSVZ9104HGbHjh385je/oWvXruzZs4eNGzdy5MgRq0PWoUOHePzxx+nYsSORSISVK1cyaNAgevToUec3IRwO88Ybb3Dvvffym9/8hk2bNtG+fXuuvvpqvF4vdrud1q1bM3HiRLZu3UqLFi2s89O3b19ef/11brnlFh588EHi4+MBaNGiBXPnzmXHjh2UlJSwfPlyBg0axIABA0hJSeHw4cMcO3aMaDTKpk2baNasGXPnzrWWMFy9ejWdO3dm6NChrFy5ss69CuByubjtttsYNmyYdd8PGzaMu+++m7lz51JZWckXX3xBVlaW9X13Op3MnDmT//f//h+33HILhmGwe/duIpEI11xzDTabjS+//JJ77rmHtm3bWt3EIpEIK1asYODAgQwYMIATJ06wfft25s2bR3JyMkuXLmXChAlWpzMREYkd5VzlXOVc5dzTKecq5/6QNPFSRERERERERERERKQJKi4uxufzkZGRgcfjwW63Y7fbcbvdPPDAA2zZsoUpU6ZgmiYtWrTA7XZjGAahUIjMzEwSExNxu93WUnO1y+55PB5atmyJYRjcdttthMNhHnjgASKRCHa7HZfLxWWXXcY777xDSkoKLVq0sJYYDIVCADgcDl588UVatmxJmzZtsNvtOJ1O0tLSrE4pl156KU6nk+bNmxMfH4/L5aKyspKamho8Ho81oApYSwD6fD6Sk5MZMGAAmzdv5tNPP2XkyJGkpKRQWlpKfHw8NpuNpKQk0tPT8fl8BAIBDMOwzgFATU2NtW3DMHA4HFaNdrsdh8NBWloaF154If/93/9Nt27d8Pv9BAIBFi5cyFVXXYXNZqtznv1+P/Hx8aSlpeHz+bDZbNjtdjweD4MHD2bGjBk0b96czMxMbDabdb6i0SgVFRV4vV46derEtddei2EYtG7dGp/PZ51TAK/Xy2effcaSJUv4yU9+QnFFoqfrAAAgAElEQVRxMXFxcSQmJpKcnEx6ejr33HMPf/jDH1iyZAlOp5NmzZrh8/moqqqylqO79NJL+eyzz9i0aRODBw9m+/btFBYWMmzYMIqLi4mPjyclJcUamMzIyCApKQmv10t1dTUul4usrCzi4uKoqqoiPj6empoaHA6Hdb28Xi/JycnWgDRA69atSUtLo2PHjtZkhFrBYBCn04nb7SYlJQWbzWadg9OXBezWrRv79+9n4cKFjBo1yvq8w+GwlvmLRqM4HA6SkpKs++L0aw1Yy/PVHm9aWhpxcXF07dqV//iP/2D8+PHs3LnT2n5CQgIZGRnWPWWz2WjRogUej4eamhq6devG7t27Wbx4MVdeeWWd705BQQFxcXHWeT3d6fdqJBKhV69eTJ8+nXbt2uFyubDZbHg8Hpo1a4bD4eChhx5izZo1vPDCC19bXjAYDBIfH09SUhKJiYksXbqUlStXcuWVVwKQnZ1NXFwcNpsNwzCs8+Pz+aioqCAxMZH4+Hjre9KhQweqqqqYPXs2o0aNsjrx5Obmcumll1rnsvac9+rVix07drB06VKuuOIKbr/9dgKBAA899BDHjx+vc68CxMfHk5ycTHx8POXl5djtds477zx8Pp/1uwTQt29f6/s+YsQISkpKiI+PJzMz0+oCdumllzJu3DiOHDlCSkqKdT1rlyO12+08+OCD/PWvf+W5555j6NChzJw5k1AoROvWrev87hiGgYiIxJZyrnKucq5ybi3lXOXcH5KWGhcRERERERERERERaYKGDh3KH/7wB1JSUggGg9hsNrxeL9FolKVLlxKJRDBNE6fTyZw5c8jLyyMxMZHMzEy8Xi+ANZANpwaH2rRpw5QpU9i1axcXXXQRK1asoLy8HMMwrO0DDBw4kMcee4wJEyYQFxdHdnY2zz77LKtXr+amm24iHA7jcDgoKioiLy+PLl26sGjRItq3b8/ll1/OuHHjePfdd6moqMDj8Vi1pKWlkZaWxjPPPMPGjRsZPny49d8uvPBCHn/8ceLj461uQH6/n6ysLJ588kkmTpzIzJkzOXDggFWny+XC6XTidDqZNWsW+/bts/ZxuvT0dEpKSvjoo4+sz7Rt2xa/389zzz1HXl4e5513Htu2baNDhw40a9bsa+d52LBhvP7667Ru3ZqTJ09iGAZerxfDMBgyZAiTJk3i2WefJSEhgczMTJ599lk++eQTxo4dy6hRo9i4cSMtWrSwJgo4HA5rG7VqB1Gj0Shbt26lf//+jB8/noKCAnJzcyktLWXFihU4nU7g1CDlSy+9RDQaZfDgwdbgcIsWLXC5XNbg5euvv05KSgqLFi1iyJAhvPLKK6xduxa/31/nurvdbux2O5FIhBdeeIGqqip+9KMf8e677zJmzBjWrVvHvn37yM7O5oknnsDn83H77bfj8Xis81q7ndrrUzv416pVK8LhME899RSJiYk4nc4zngOfz8cFF1zAli1brEFbp9NJ3759mTp1KuvWraOqqop169aRkpLCjTfeyMyZM61zmpOTw4svvsjRo0dp3749gwcP5tVXX6VVq1aUl5dz8OBBPv/8c2vfteLi4jAMA6fTiWmaOBwOXn/9dTIzM+nRowcZGRl06tSJXbt20aZNGxYvXmx9d/r378/DDz+M3+9n37591nU4/dhqj2P48OHccMMNPPPMM7Rr1w6/38///d//8cknn5CTk8NHH32EaZp1BqMBnE4nffr04fHHHyc5OZns7Gzg1GDx1q1bSU1Ntc671+tl/fr11vmZNWsWQ4cO5amnnqJ58+bceOONZGdn43K56NOnD2+99Ra///3v2bZtG6ZpUl1dzfbt2+nVqxfPPPMMe/bs4eTJkyQlJdG+fXsOHDhAdnY2ixYtorKyEoABAwYwYcIE61612WycOHGCZ599ll27dnHnnXcyf/58bDZbnXsOIDU11fq+t2zZkiFDhvD8888TFxdHOBxm165d7Nu3D7vdXuezp99zkUiEpUuXWucuJyeHyZMnc8MNN1gTZZ555hm2bt3KoEGDvuFXV0REzhXlXOVc5Vzl3FrKucq5PyTj72+4cyUnJ8esbVsqIiIi0pQZhrHJNM2cWNch3x9lXREREZFTlHWlsWisGT8cDnP06FGrw096ejp+v5+MjAyOHz9OVVUVzZs3JxwOEwgEqKysJCsrC6fTSWlpqTUIG41GGT9+PPfdd5/12YSEBJxOJ9FolNLSUqu7TUlJCenp6QQCAX7961/z3HPPkZSURGVlJYWFhfh8PkzT5J577mHcuHGsXbuWaDTKL3/5S44cOUJqaiper5fjx4/TvHlzQqEQFRUVpKamWktDBoNBioqKSEhIwO12W8u1VVdXk5+fb3VtKS8vJxwOk5ycTGFhIZmZmVRUVGAYBoFAgIyMDOt5NBolGAxSWVlJRkYGGzZsYMWKFfz+97/HMAxM06SoqAjTNPF4PDgcDuLi4igrK8Pv95Oenk5CQoI1wJiQkIBpmnXOs8vl4tixY9ZAZkZGBidOnLDquuOOO3jppZesrid+v5+4uDh8Ph8ej4cjR44QjUZp1qwZ1dXVuN1uXC4XJ06c4NixY8yYMYMWLVrQsmVLunTpwpQpU3j11VcpLS0lEongcDhITU0lPz8fwzBo2bIlxcXFRKNRqqurycrKYvHixRw8eJC77rqL0tJSqxtMfn6+1QUqKyuLY8eOWYN7aWlp1v1SWlqKx+OhvLzcGphs0aIFxcXFpKamUl1dTTgcxuVyUVBQQFJSEikpKRiGYZ27uLg4Tp48SXJyMmVlZfh8PquLT+19lJGRQTgcxuv14nQ6OXHiBIcPH+bPf/4zkydPpqqqiqqqKtLT0ykrK8PhcOD1esnPz8dut2MYBi6XC5fLhdvtpqSkBLvdbg0q5+fnExcXh9PpJDExkaNHj+J0Oq0uUvn5+bjdbjweD/fddx+TJk0iGo2SkZFhdVQKhUKEw2Hr+rvdbioqKggGg6SlpVFSUmJ9dxITEykoKCAcDuN0OklPT8fhcBCNRjlx4kSdezUuLo6CggIyMzOx2+2UlJRQVlZmdRI6efIkgUDA6kJ0upqaGvLz8/F6vUydOpXOnTvTpk0bnn/+eZ5//nlM0yQpKYmioiKrS1Xt+UlJSSE/Px+Hw0FWVpY1aL5o0SL27t3LnXfeyd133211wZo1axbPPfccx48fxzAMDMMgMzOTyspKqqur65yD2u9PQUGBda+mpaXh9/uJRqMYhkFWVhYlJSUkJCRgGAbFxcXs3LnT+p7Wft9TUlKIRCIcOXIEj8eDzWYjPj7e6raUkZFh/Q7W3hu1v0unf189Hg+FhYUkJibi8Xisey8hIQGXy1VnqcymICcnh40bN6oFkkgDpJyrnKucq5yrnKucq5z7zf5ZztXESxEREZEY02B046OsKyIiInKKsq40Fsr4/9iGDRvYsWMH119/vdU145/x+/2sXbuWK6644mvLlUWjUZYtW8b27dtJS0vj6quvtgaV64OqqireeustBg8eTOfOnc/JPgsLC9m0aRMjR4486+XdQqEQb7/9Nt26dSMjI4N58+YBMGTIEC644IJvvb2TJ08yY8YMRo0aRevWrc/6GGKppqaGGTNm0KtXL3r06HHO9vvpp59y/PhxrrvuOqtjVkNx4MAB/vKXv2Cz2bjsssvo1KnTd1pacPny5bRv357s7Gy2b9/OsmXLcLvdXHHFFWRnZ/9gyxXG4nvalGnipUjDpZz7jynn/vCUc/81yrlnTzlXzoYmXoqIiIjUcxqMbnyUdUVEREROUdaVxkIZX0RE5Jtp4qVIw6WcKyIi8s3+Wc61nctiREREREREREREREREREREREREREQaMk28FBERERERERERERERERERERERERH5ljTxUkREREREREREREREvqaoqIi9e/eyadMmtm3bdsb3hMNhZs6cSXV19Vlvf//+/axYsaLOa3l5eSxbtuyM79+yZQtbt2496/3UqqysZPbs2USj0W98z+eff87mzZu/8z6qqqqYNWvWGfdRWFjIwoULMU3zGz+/c+dO1q1b90/3Y5omc+bM4eTJk9/4nlAoxMyZMwmFQtZrubm55OfnW89PnjzJ3Llz/2FNf7/fBQsWcOLEiW/1/lrf9ri+jYMHD7J8+fJ/+r7t27ezYcMGysrKeOGFFzjTMqqffPIJhw4d+pdr+vvtHDlyhKVLl1rPo9EoW7Zs+Vbfk5qaGmbOnEk4HLZeO3DgAAUFBf9ynYsXL65z/UVERJoq5dyzp5x7Zsq5yrnStGnipYiIiIiIiIiIiIhIE2SaJtFolEAgYD02TdN6XFVVRXFxMZ9//jm7du0iEAhY74lEIta/efPmEQgEqK6utj4fCASoqakhGo1+bbu1/z03N5e1a9cSjUaJRCJEo1GOHj3KqlWrCAaDRCIRq85AIMAXX3zBjh07ME2Tqqoq6zO1f8+0n9rjqz2eBQsWUFNTQ01NTZ1B2Np97Nixg23btn1tW6fv5/T9n76PSCRCIBBgwYIFVFdXW/swTZNgMMjx48f5+OOPrdfOtO29e/eyefPmOuf6748pHA4TDAZZtGgR5eXl33gOQqEQH3zwAcFg0Lo2paWlVFRUYJom1dXVFBcXs2jRIgCCweAZz8vf1/HRRx/h9/ut++Z04XD4a/dTNBplz549dY4LIBKJ1DmPtc/PdC+e/vjw4cOsWbOmzj0SDoetz9Zey127dvH555+zatUqampq6Ny5s1Vn7TVbvXo1hw8f/sbrXXt8f388f//+2u3UHnt+fj4rVqwgGAxaA8sFBQWEw+E62zl9+zU1NVRXVxMKhZg3b97XrltlZaV17v6+jr/f1un3fe25DgQCLF++nOPHj9fZzredjCAiItKQKOcq5yrnKucq58q54Ih1ASIiIiIiIiIiIiIicu69//77rF69moqKCoYNG4bL5aJVq1Z06dKFl19+mZEjR7J7924AFixYwKeffkpOTg7Dhw/njTfeIDc3lzvvvJPS0lKeeuop8vPzGT9+PPn5+fzlL3/h2LFjjBw5kry8PO644w62bt2K3+8nGAyycuVK/H4/Xbt2ZfHixaxYsYLq6mquvvpq1q9fz8MPP4zH4+G3v/0tb7/9Njt27ODQoUNce+21LFiwgI0bN9K3b1+Sk5NZtGgRRUVFDBs2jKysLPr27csLL7xAr169mD17NqZp0qlTJ/7zP/+TvLw8Hn/8cUpKSvjf//1fMjMziUajvPnmm3zxxRccPnyY4cOHM2XKFKvm/Px8jh49yu7du+nduzeZmZmsWbOGXr160aJFC6ZPnw5Au3bt+PnPf87hw4d54oknKC4u5qGHHmLnzp3WwLDb7ebVV1/lyiuvxGazMW/ePFJTU9m4cSNer5cePXqwbNkydu3aRYcOHejbty9FRUVcfvnlPP/881x77bW89NJLhEIh9u7dS3l5OU8//TT79u1j6NChHDlyhLFjx7J06VIcDgd+v59JkyZRUFDAo48+SnFxMaWlpZSUlDBjxgwikQg1NTXs37+fN998k2bNmjFmzBjcbjdwasDyhRde4IYbbqC4uJjVq1cTCoV49dVXqaqq4tprr2Xo0KEYhkFBQQH/93//RyAQ4Oqrr2bjxo3813/9F/PnzyczM7POcY0ZM4aXXnqJwsJCysvLGTduHG+88QYlJSVce+21bNmyhauuuorFixfTrFkz3G43w4cP5/nnn6dTp06sWbOGsrIyfD4fv/nNb3jllVeorq7m+uuvZ8WKFWzdupWjR48yZMgQ5s2bx/Hjx/nJT35Cx44dCYVCTJkyhePHj7N9+3a6d+/O888/z5133sm8efNITk5m/fr17N+/n//6r/9i6NChnDhxgjfffJPrr7+euXPn4nA4GDFiBD6fj5kzZxKJRHjnnXeYOXMmAwcOpE2bNmzYsIEHHniAhIQEHnzwQfbs2UPbtm2ZP38+119/PR988AFjxozB4XDw5Zdf8tprr2EYBrfddhtFRUU88cQTFBQU8Nhjj3HixAn27dvH4sWL+dWvfsW7775LWloau3fv5ic/+QnLli3jF7/4BXa7nQ8//JAlS5YQDAbp168f//mf/8lTTz1FaWkpW7duZciQIaxevdraTs+ePTn//PNj9jskIiLyQ1DOVc5VzlXOVc6Vc0EdL0VEREREREREREREmqDc3FwuvPBCHnnkERYtWkTr1q2ZNWsWX3zxBVVVVVRVVbF3714AevTowcSJE1m+fDkZGRnccMMNJCQk0LZtW5xOJ//93//NsGHD+OSTT1iwYAE33HADbdu2pW3btgQCAbZs2cL8+fNJT09n8eLFPProowwbNgyA4cOHc/7559O9e3ecTifZ2dmMHz+eyspKVq9ezaZNm3jiiSfo3bs3pmmyevVqLrroIgYMGEC/fv245JJL6NixI926dWP27Nl8+eWXFBUVcfLkSZKSkpg0aRJ//etfqaysJD4+nv/5n/8hJyeHDz/8EIDS0lLWr1/P448/Tt++fXG5XHVqbt++Pbfccgtut5vevXuzZs0aLrzwQgYNGkRRURE+n49JkyaxZcsWysvL8fl8jB07ln79+jF//nxmz57NuHHjuO666zAMg6ysLBYuXMgnn3xCUlIS11xzDa1atSInJwebzUanTp2YOHEif/3rX0lPT2fevHkcPHiQvXv3sm3bNtq2bcvDDz9MamoqCQkJ/PKXv8TpdNK/f3+OHDnC7t27+ctf/kJ2djZut5tf/epX9O/fn5UrV3Ls2DGOHj3KzJkzGTt2LDfddBOGYbBjxw5cLhdXX301TqfTukcMwyAhIYFly5axePFiMjMzMQyDK6+8kgceeIA//elPVjee999/n379+jFp0iR69eqFYRjccccd9OjRA6fTWee49uzZQ2FhIXfeeScAGzdupFmzZkyePJkePXrQu3dv7rzzTmpqaujTpw8ffPABubm5HDhwAJ/PR+vWrXnkkUcoLS1l06ZN7Ny5k1GjRhEfH8/q1auZOHEi/fv3x+l0cumllzJq1Cjat28PnFrOsKSkhCeeeIIOHTqQlJTEnj17yM3NZfHixZx//vnWOe3atSsAaWlpOJ1Ofv3rX9O9e3dat27NvHnzWLFiBXFxcdhsNgYNGsSjjz7K/PnzCQQCtGrVigkTJnDkyBEKCwvZvn07Pp/P2k63bt1wOE71R3nzzTe54YYbePjhh0lOTsbtdnP77bfTp08f1qxZw5EjR6ipqWHLli0cPnyYZcuWkZOTw4kTJ7j33nvp27cvNtupIb8jR47Qrl07Jk6cyMcff8zWrVsxTZOJEyeSnZ1NWlpane00b978h/6pEREROeeUc5VzlXOVc5Vz5VzQxEsRERERERERERERkSbIMAyys7Pxer2Ew2E6duxIYWEhc+bMYdSoURiGYb239n2RSIRwOMzUqVP5+c9/js/nw+fzkZGRgc/ns7rdTJ06lbi4OM4//3wuu+wyZs2aRXl5OR07drTek5WVhWEYHDlyhLVr1zJ69GgMwyA9PR2Px4PT6aS0tJRwOIzL5SIrKwubzcb999/P4cOHmTBhAn6/nzlz5nDLLbfQrl07AoEAM2fOtOpv1aoVXq8XwzCIRCIkJiYSHx+P1+ulsrISgOrqamsfzZo1wzCMOjV36dKFDz/8kLZt29KlSxfuvvtu/H4/48ePJxKJ1NlHNBolMTGRhIQE4uLiKCsro7y8HI/HY9Xfv39/1q1bx9q1axk6dCi7du3i0KFDjBw58ms1p6amEh8fz4wZMxg+fDjl5eW43W58Ph9JSUmYpsm7777L4MGDadWqFUOGDOGdd94hLi6OVq1aER8fT1paGnFxcQSDQeBUd5+TJ0/i9XrJyMiwutr07t2b+++/n8LCwjr3yODBg1m6dCk7d+5kwIAB2O12MjMz8Xg8BINBawm/srIyEhMT8Xg8+Hw+0tPTKSgoIDExEaDOcdlsNg4cOMCrr77K6NGjqaysJCEhAZfLRXx8PCkpKfj9fhISEqxOQG+//TYjR47EbreTkZGBy+XC4XAQHx/Pfffdx9SpU5k3bx6hUKjO/WWz2bDb7daAbWVlJTabDbfbTUZGBna7nQEDBvDWW2+RmZlJRkYGM2bM4Mc//jGZmZnWecjIyLCOp0+fPmzZsoXPPvuMESNGWBMN3G43oVCISCRC8+bNiYuLw+FwWMsw/v12alVUVFj3jNvtJjExkdTU1DrXzel00rt3b6ZNm0aHDh1ITU0lLS2NwsJCEhISzvh9jUajlJWV4XA48Hg81sD66dtJTk7+fn9YRERE6gHlXOVc5VzlXOVcORc08VJEREREREREREREpAlyu904nU4MwyAuLg6Px0Pfvn3Zu3cvnTt3rvM+l8sFgM/nY+fOnXzxxResW7eOvLw8fD4fcGrAzOVyEQ6HiUajnDhxgt27d9O9e3f2799Pz549SUlJoV27dkyePJm3334bl8vFO++8g8PhYM6cOZimydq1a5k8eTKHDx9m8ODBeDwepkyZwvz583E4HCxZsoTKykocDgfz588nFArxwQcfUFNTw+DBg9myZYvVVcjtdlvHZ7fbOXLkCFOmTGHu3LkMGTIEgIyMDBISEqzXXS5XnZpDoRB/+tOfqKioYMWKFXz00UeUl5djt9utfQBWR5hjx44xZcoUZs2axciRI+nTpw+TJ0/mj3/8Iw6Hg4yMDGtgMD09nWnTpuF0Opk/fz52u/1rNY8cOZLly5fTr18/+vfvz8cff8wzzzzDgQMHKC4uZuHChRw+fJgtW7bQv39/1q9fz8CBA7Hb7fh8PgzDwOVyWdewtmvNlClTePHFFwHYunUre/fuxeFwWAO3tc477zwAmjVrRmJiIjabjVdeeYXHH3+cSy+91OpmM2LECN58800mTZrE/Pnz+fzzz3n++eeZNm0ahmHUOa5IJEI0GgVg06ZN9O7dmw8//JCnnnqKDz/8kGnTpvHyyy+zfv16ioqKGDFiBCtWrODiiy/G4XCwatUqJk+eTEFBARkZGSxbtgzDMMjMzCQlJYWnn36a999/3zru2mMH6NixI8eOHeOZZ55h9erVOBwOhgwZwqeffsqQIUM4fvw4S5cuZf/+/Wzfvh2A/Px8Nm7cyEsvvcT06dNJSEggOzubcDhM8+bNcblcTJ8+nYkTJ3LBBReQlJSEx+Opc1+caTu1A9UjR47k6aef5vHHHycvL4+4uLivXTeAYcOGsWTJEoYOHcq+ffusJRqnTZtmnU+Xy2V1c4qLi6Nbt27s2rWLZ555hk2bNmG32+ts5/SBbBERkcZCOVc5VzlXOVc5V84Fo3aG9rmWk5Njbty4MSb7FhEREalPDMPYZJpmTqzrkO+Psq6IiIjIKcq60lg01oxfVlZmDagWFxeTlpZGdXU1FRUVJCUlMXfuXPx+PzfeeCOGYeD1eikuLsbn81FUVARAeno6VVVVpKamEgwGCQQC3H333YwdO5a9e/dy8OBB7r//fvx+Pz6fD6/XS1VVFSdOnMDn81ldUioqKnA6naSkpFBZWUkwGLQ66lRUVFBSUoLP57O6z1RWVpKenk5NTQ0nT57EbrfTvHlzwuEwZWVlpKenEwgEiEQixMfH4/f7SUpKsjoLOZ1O0tLSMAwD0zSprKy0jq22005tzW63m/z8fMLhMAkJCQCUl5eTnp6OzWYjFAqRkJBQZx+RSASHw0FaWho1NTUcP34cn8+HzWYjOTmZ8vJyTNMkMTGRoqIiAoGA1QHm9JpTU1OJRCIUFxdbXWmKioqsY0hISKCoqIhoNEpKSor1PDk5GYfDYV3XqqoqAoEAr732Gr179+bSSy+loKDA6szj9Xqta5KamlpnkLK2c5Ddbic+Pp6SkhKi0SjBYJBmzZpZA9KmaVJUVEQoFCIpKYlwOExSUhJ+vx+Px4NpmtZx/fWvf2XTpk1cd911PPXUUzz22GN4PB4CgQAZGRnWNSwrK8PtdmO3261zUHuPBoNBkpKSiIuLo6CgADg1aB4IBOpcy9prHB8fb9VZWlpKZWUlHo/H6kBUWFhIamoqAAUFBUSjUWuZy2AwaO2v9rpUVVVZx1hWVkY4HKaqqoqsrCxM0yQQCJCUlERxcTGhUIjf/e53PPHEE3g8njrbsdlsRCIRCgsLsdlspKenU1JSUue6vfLKKwwcOJCBAwdSWFhIeno61dXV1r1SXFxsbat2soTH47Guf3FxMYFAAI/HQ2JiIg6Hw9pO7fUT+Vfk5OSwceNGzW4QaYCUc5VzlXOVc5VzRb7ZP8u5mngpIiIiEmMajG58lHVFRERETlHWlcaiKWb80tJS3n33XUaNGkWrVq2+9edqO/ls3LiRxMRErrrqKlJSUn7ASuXbysvLY9GiRfzsZz+rs/xfLJw8eZI5c+ZQUVHBRRddRL9+/b7WgagxWb58OaWlpVx11VVnfZwHDx5kyZIlXH/99dagukh9o4mXIg2Xcq5ybmOgnBs7yrnS2GnipYiIiEg9p8HoxkdZV0REROQUZV1pLJTxRUREvpkmXoo0XMq5IiIi3+yf5dzGO61aREREREREREREREREREREREREROR7pomXIiIiIiIiIiIiIiIiIiIiIiIiIiLfkiZeioiIiIiIiIiIiIiIiIiIiIiIiIh8S5p4KSIiIiIiIiIiIiIiIiIiIiIiIiLyLWnipYiIiIiIiIiIiIiIiIiIiIiIiIjIt+SIdQEiIiIiIiIiIiIiInJuhcNh9u/fTyQSiXUpIiJNhmEYtGnTBq/XG+tSREQaLeVcEZFzr6nmXE28FBERERERERERERFpYvx+P08//TQDBgyIdSnyPTl06BB+v5+LLroo1qXI92TTpk1kZGRw3nnnxboU+Z5s2bKFm2++mZ49e8a6FBGRRks5t/FRzm18lHMbn6aaczXxUkRERERERERERESkiTFNk86dO3PzzTfHuhT5nmzYsIHc3FxGjx4d6xjySmAAACAASURBVFLke+L1eunQoQO9evWKdSnyPfF6vUSj0ViXISLSqCnnNj7KuY2Pcm7j01RzriZeioiIiIiIiIiIiIg0cf/+5/sprjlAi0Sn9ZrL5cJms8WwqtgYvWoEWdEEWrXOjnUpZyW1vJq4YCqFf9xmvWaaUSKRCA6H87THDsCIXaHn2PiTyzlYnUhiZudYl3LWioq8eI/4id+4ts7r0WiUUKgGMHC5XFRXVxOJhPH54gE4GKgmJc3L4hv7xqBqERGR+kU592+Ucxufhpp1v2vOBWVdqV+a3v9JRERERERERERERESkjuLKGsqDNRwvPM6ePXsoLi6mpqYGONU1qLq6mvz8/DqfMU2T0tJSSktLY1HyD8ZR48WINI6+FYFAgCNHjgBQXV1NXl5ejCs69yLOcqK26liX8b2pqalh3759HD9eSGFhIX6/n6qqKkpLT2KaJgCVkSj+mnCMKxUREakflHP/Rjm38WlMWffb5FxQ1pX6pXH8ooqIiIiIiIiIiIiIyHfWLPxTmgGThjfjySef5OX7XubgwYO88cYbRCIR0tPTmT17Nr+8+5ckJyezYsUKEhMT2b17N6Wlpdx272307ds4Oo7MXTadChN63joi1qWclUMbNpCbe4zRoy+zXtu2bRt/emM5E372Iwpyc3nrlaW8NOYlDKPpdAK6Zs4YAEZesy7GlZy9mTNn0qFDS2sJRtM0efzxx7lxQBeuvvpqTNMkGo3y0Ucf8ac/zSWzPJMLLriAmiGDmlqzJxERkW+knPs3yrmNT0PNut81595yyy1c+/n+GFcv8jeaeCkiIiIiIiIiIiIiIl9z4sQJdu7cydSpUzl48CD79+/n8ssv5/XXX8dut3Pbbbfx5z//GYCePXvGuFr5JsuXL+fWW2+loqKC9PT0WJcj/6Lc3FxuvPFGPvnkE5YuXUrr1q1p3bo1KSkpPPDAA/zmN78h0v0S7A57rEsVERGpt5RzGwfl3Mbl2+Tc0aNHx7pMkTq01LiIiIiIiIiIiIiIiJzR+eefT0pKCh6PB5fLhdfrxTAMevbsSXx8PG63G6/Xi8vlinWp8g0uu+wypk2bxpNPPonX6411OfIvatasGV988QWDBw/m5ptvZseOHQD827/9GykpKdhstjpLMYqIiMiZKec2fMq5jcu3ybnhsJYYl/pFHS9FRERERERERERERAQAwzBwOp3WY4fDgWEYpKSk4Pf7WblyJXa7Hbv9VDe91q1bM2vWLHr16kXnzp1jWbqcgc1mw+VyWf8cDg0LNWSGYXDTTTfxu9/9jkOHDlFcXExCQgI2m836TtZ+f0VERKQu5dzGRTm3cfm2ObepLSUv9Z9+eUREREREREREREREBIAWLVpw//33A6e6ALVs2RI41X3k0UcfBaBLly5W55/+/fuTkZFBWlpabAqWf6h9+/bceeedALRq1Yr77rsvxhXJv6pDhw5MnTqVw4cPY7PZaNOmDdFolJycHOx2O+PHj2esvzrWZYqIiNQ7yrmNi3Ju4/Ntcm5CQgJwItalilg08VJEREREREREREREpImKRqN1njscDlq2bIlpmng8Hjwej/We884772uftdlsdOrU6Yzbauga2vHULi99et1ut5tmzZoRjUZxOp20aNEC0zSb5FLUDe16Ata1+vvak5KSSEpKqvNafHw8pmmSnZ2N4d8PZsM85sauKX73RERiRTn3mzW041HO/eca4jX9Ljn31IdP/Wlox9zYNdXvniZeioiIiIiIiIiIiIg0QatXr6asrAyAgzWnlk985JHFsSypXugcbAHAI488EuNKzs6xY8coLS1lx44dsS6lXunZKQg0vOsJsGPHDlJTU2nevPlZfe5gj0sAeGTe2z9EWfIv+PLLL61uayIi8sNRzj0z5dzGp6Fm3e+ac0FZt75qqjlXEy9FRERERERERERERJqgvn37ctdddwGwc9pmAMbdfHUsS6oXPvz9TADGjRsX40rOzubNmzl48CDXXHNNrEupVz798NQki4Z2PQFmz55N+/bt6dmz51l9buuOPADGjWx4x9zYvf/++7EuQUSkSVDOPTPl3ManoWbd75pzQVm3vmqqOVcTL0VEREREREREREREmiCHw4HX6wWg097VJFan8cFdh772PtM0MQzjXJcXM817r8BMyuOT5dNjXcpZiUQi+OKjfLL8tViXUq88U5RFla2M92YOjHUpZy0UqsG2y459j/2sPpdQU8V5URfenK0/UGXyXTmdzliXICLSJCjnnplybuPTULPud825oKxbXzXVnGuLdQEiIiIiIiIiIiIiIhJb1e4wNU6TaCRCMBikOhgkVFODaZoEgwHAjHWJ54zLZsNuNI7hk5qaEGb01LUzoyahmlCMKzr3KkI+qqPuWJfxvYlEwoTD4a8eRwiHv35N7UTxRKvPdWkiIiL1knLu3yjnNj6NKet+m5wLyrpSv6jjpYiIiIiIiIiIiIhIE3di0F7yQzvZ8acIv/vd72jdujV5eXk0b96cO+64g7t+cRfRaJR+/fpht599V5KG5PD/nDq+7Gd/GuNKzs6GDRvIzc3l6qtGA6c6OE2dOhWn08nNN9/MjBkzsNvt/OyqnzWpzk5PPTIXD/Dm+H+PdSlnbebMmXTo0IFevXpZr82ePZvS0lJ+efMvWbJkCdu3b+e6664jKysLh8NBXl4ebT+7A8PZdK6xiIjIP6Kc+zfKuY1PQ8263znntm2LMe1KaJrNFaUeahxT2UVERERERERERERE5F9SVlZGr169aNOmDevXr6e4uBjDMDh48CDbt2/nzTffZNu2bbEuU74lwzAYOXIka9eupbq6mvXr1zNo0KAmNxjdGH300Uc8/fTTzJ49G9M0mTNnDqtWrWL79u288cYbsS5PRESk3lHObVyUcxsv5VxpaDTxUkREREREREREREREgFPdYwzDwG638+yzz1JSUkLbtm25+eab6du3L7m5ubEuUc5Cy5YtcTqdrFu3joSEBFq0aBHrkuR70KpVK7p370779u0xDIPhw4ezePFili1bxvDhwzHQpAMREZG/p5zbuCjnNk7/NOdqcq3UM5p4KSIiIiIiIiIiIiIiJCQksGrVKnbu3MmFF16Iy+XCNE1sNpsGuBoom83GwIEDeeKJJxgwYAA2m4aFGoPzzz+fYcOG0bNnTwA6dOjA8ePH2bJlCxdddFGMqxMREal/lHMbH+Xcxkk5VxoaR6wLEBERERERERERERGR2HO5XEyYMIEFCxZgmibDhg0jMzOToUOHYrPZ6NKlC/Hx8bEuU86CYRhcdtll7Nq1i/79+8e6HPketGvXjqqqKgCys7Ox2+24XC5uuOEGiouL8fl8Ma5QRESk/lHObXyUcxsf5VxpiDTxUkREREREREREREREAOjWrRsXXnhhndd+8YtfYBgGl1xySYyqkn9Feno6Dz/8cKzLkO9JbfcfgC5dutClSxdrGUZAXbtERES+gXJu46Oc27go50pDpImXIiIiIiIiIiIiIiJNUF5eHsuXLwegtLQUwHrelLUJh4GGdy52795NQUFBg6v7hxZuoNcTYMeOHZSWllJWVnZWn+tRWgLA1gZ4zI3drl276NChQ6zLEBFp9JRzz0w5t/FpqFn3u+ZcUNatr5pqztXESxERERERERERERGRJigcDltLuUUiEQDreVNmmqf+NrRzEQwGqa6ubnB1nysN8bzU1NQQDAbPuvZoNAo0zGNu7GpqamJdgohIk6Cce2bKuY1XQzs33zXngrJufdVUc64mXoqIiIiIiIiIiIiINEHt2rXjiiuuAMB1X4A004vbFYpxVbE3KbuQ3GAS+V96Y13KWQlHLiCa1IUFXzpjXUq90j+cR2Z1MmUfnIx1KWft/FBnbIU2yrafXe1Lqn5BYs0xrrznih+oMvmuKioqYl2CiEiToJx7Zsq5jU9DzbrfNeeCsm591VRzri3WBYiIiIiIiIiIiIiISGw5TR8GrlPdQ0zA5G+PmxjTWYFhr451Gd8L0zSJRCJEIhFM08TkVCeS0y9rNBolGo0SCoet7jGNiqOKqK3xTLQIh0P/9DqZJpgR4xxVJCIiUr8p5/6Ncm4j1Iiy7rfJuaCsK/WLOl6KiIiIiIiIiIiIiDRxJc2zKAqHWPTln5g6dSqBQIDbb7+dqVOn4nK5gFODm4ZhYBiNe5Dr2jmTABh5zboYV3J2NmzYQG5uLqNHj7Ze++KLL3jkkUe4/PLLWbNmDc888wy33XYbf/jDH3C73Xg8Hnbu3Indbufdd99l5MiRdOvWjbi4uEZznXvPfhWAx6/7c4wrOXszZ86kQ4cO9OrVy3ptwoQJDB48mIsuuoi4uDgAQqEQ4XAYt9uNzWYj7+c3gS9WVYuIiNQvyrl/o5zbuHIuNNys+11zrmEYHLrx58q6Um+o46WIiIiIiIiIiIiIiGACVVVV5OfnU1BQQDAYZNGiRaxatYpgMMjkyZOprm4cHXKaCtM0yczMZNCgQYS/6vRTUlLCk08+ya9+9SsOHjyI3+/nwIEDRKNR3nrrLX77298ye/ZsTLMJtoFqAEzT5O2332bs2LF88MEHnDhxgscee4xx48Yxfvx4QqHG0fFIRETk+6Sc2/go5zY+yrnSEKnjpYiIiIiIiIiIiIiIAHDgwAHGjx9POBzG7/fToUMHXn/9deLi4igrK8Ptdse6RDlL69evZ+LEiRiGQTAYxOVyceutt7J27VqWL19OYmIipaWlAAwbNowhQ4Zw5513cuWVV+L1emNcvZzJ0KFDufjii3n00UfxeDy0bNmS4cOHs2rVKpxOZ6zLExERqZeUcxsf5dzGRzlXGhp1vBQREREREREREREREQA6d+7MH//4R1588UWysrJo164dFRUVvPfee/zkJz9pVMvyNRU/+tGPeO2118jOzmbz5s34fD7S09OJi4sjGAxa77PZbKSnp+N0OgmFQkSj0RhWLd/EMAxatGiB1+slFArhcrlYuXIly5Yt45prrtF3VERE5Bso5zY+yrmNi3KuNESaeCkiIiIiIiIiIiIiIhhAfHw8NpsNm81GfHw8TqeTQYMGsWvXLrp27RrrEuUsORwO9u7dy7PPPsuxY8fo0qUL8fHxGIaB0+nE4/FY73W5XEybNo3HHnuMnj17qgtQPeX1enE6nRiGQXx8PNFolEgkQk1NDatWrSISicS6RBERkXpHObfxUc5tfJRzpSHSUuMiIiIiIiIiIiIiIoLD4WDixInYbDbi4uKYNGkSTqeT0aNHc/nllxMXFxfrEuUsdezYkZdeegmA1NRUPB4PkyZNwuv1MmTIEKqqqpg2bRpdunRh9OjRRCIRAoEAGRkZ2Gzq3VEfjRkzBrfbjcPhYMKECbzxxhtceeWVdO7cmeeff56f/exnsS5RRESk3lHObXyUcxufb5Nz7XZ7rMsUqUMTL0VEREREREREREREmqBoNEpNTQ0Apnlqub34+HhCoVCdx4ZhkJCQYL3e2JmYANa5aSjC4bDVEeZ0GRkZ1uNQKER8fDzhcBi73U5FRQUej4c+ffpYXYF8Ph+maTa44/9Gpy5ngzyecDhMOByuU3vtdYpEIsTHx3PdddexcOFC1q5dy3333YfNZiNqNsx7uClQpyYRkXNDOffMlHMbWc6FBpt1v2vOrampUdatp5pqzjXMr27Icy0nJ8fcuHFjTPYtIiIiUp8YhrHJNM2cWNch3x9lXREREZFTlHWlsWiMGb+kpIRHHnmExMREADzVmUQcAcKOihhXFns3pk8nKRCkojI11qWclUgkQjQaxel0xrqUeuWlygw8FR4SgimxLuWshUIhbDbbWXf2SS4tJS4UYW+vfj9QZfJdlZaWcscdd/Bv//ZvsS7le5WTk8PGjRuNWNchImdPObdpUc5tfBpq1v2uOReUdeurpppz1fFSRERERERERERERKSJSU5OZsqUKdbzN1+cSUV1KUkZ6TGsqn6InIwDM0qbNm1iXYp8D5J3BjEMB62b0PUM5eWR4olj/PjxsS5FzkDLm4qI/LCUc7+Zcm7jo6wr9UlTzLmaeCkiIiIiIiIiIiIiDZZhGAeBciAChE3TzDEMIxWYCbQBDgKjTdMsMQzDAJ4DLgeqgJtN09wci7pjzTCMOt1Ffjn2ZzGspr75RawLkO/RQ7EuQERE5F+grHv2lHP/EeXcxkZZVyS2mt5UUxERERERERERERFpbIaYptnjtKXtxwHLTNPsCCz76jnAj4GOX/0bA7x8zisVERERETk7yroiIiL1kCZeioiIiIiIiIiIiEhjcxUw/avH04GrT3v9LfOUdUCyYRjNY1GgiIiIiMh3pKwrIiJSD2jipYiIiIiIiIiIiIg0ZCbwkWEYmwzDGPPVa1mmaeZ/9bgAyPrqcUvg8GmfPfLVayIiIiIi9ZGyroiISD3liHUBIiIiIiIiIiIiIiL/gktM0zxqGEYmsNQwjC9P/4+maZqGYZhnu9GvBrbHAJx33nnfT6UiIiIiImfne8+6yrkiIiLfD3W8FBEREREREREREZEGyzTNo1/9LQTmAn2A47XLKn71t/Crtx8Fsk/7eKuvXjvTdl81TTPHNM2cjIyMH6p8ERERkf/P3v2G6nnfdRz/fG2sig47t2MZSWoLZkhR94dDqeyBY1XpprQDt9GhroxinmwwmaidwsTpA6fgVBhisWIVtdb5p2FGx+g6RKGz0c1pW6bHutGEbQ1dV5WxzerXB7kqx5g039Pe5+Q+5fWCQ67rd/1y59dnX3re3Bec127MuuZcAFgN4SUAAAAAAPtSVX1tVT3vqesk35PkH5McS3Lzsu3mJHcv18eSvKnOuDbJE9te0wgAAGvDrAsA682rxgEAAAAA2K8uT/InVZWc+f/dv9fdf1FV9ye5q6puSfKpJG9Y9h9P8pokW0m+kOTNe39kAAAYMesCwBoTXgIAAAAAsC9198NJXnKO9ceSXHeO9U7ylj04GgAAPCtmXQBYb141DgAAAAAAAAAAADAkvAQAAAAAAAAAAAAYEl4CAAAAAAAAAAAADAkvAQAAAAAAAAAAAIaElwAAAAAAAAAAAABDwksAAAAAAAAAAACAIeElAAAAAAAAAAAAwJDwEgAAAAAAAAAAAGBIeAkAAAAAAAAAAAAwJLwEAAAAAAAAAAAAGBqFl1V1fVV9oqq2qurW8+x5Q1U9WFUPVNXvrfaYAACwO8y6AAAAAAAAAOzEgQttqKpLkrw3yXcnOZnk/qo61t0PbttzJMk7kryiux+vqm/crQMDAMCqmHUBAAAAAAAA2KnJN15ek2Srux/u7i8nuTPJjWft+eEk7+3ux5Okux9d7TEBAGBXmHUBAAAAAAAA2JFJeHkwySPb7k8ua9u9OMmLq+qvq+q+qrp+VQcEAIBdZNYFAAAAAAAAYEcu+KrxHXzOkSSvTHIoyV9W1bd19+e3b6qqo0mOJskVV1yxon8aAAB2lVkXAAAAAAAAgP81+cbLU0kOb7s/tKxtdzLJse7+z+7+1yT/lDO/nP4/uvu27t7s7s2NjY1nemYAAFgVsy4AAAAAAAAAOzIJL+9PcqSqrqqqS5PclOTYWXv+NGe+AShV9cKceR3jwys8JwAA7AazLgAAAAAAAAA7csHwsrufTPLWJB9I8lCSu7r7gap6V1XdsGz7QJLHqurBJPcm+bHufmy3Dg0AAKtg1gUAAAAAAABgpw5MNnX38STHz1p757brTvL25QcAAPYNsy4AAAAAAAAAOzF51TgAAAAAAAAAAAAAEV4CAAAAAAAAAAAAjAkvAQAAAAAAAAAAAIaElwAAAAAAAAAAAABDwksAAAAAAAAAAACAIeElAAAAAAAAAAAAwJDwEgAAAAAAAAAAAGBIeAkAAAAAAAAAAAAwJLwEAAAAAAAAAAAAGBJeAgAAAAAAAAAAAAwJLwEAAAAAAAAAAACGhJcAAAAAAAAAAAAAQ8JLAAAAAAAAAAAAgCHhJQAAAAAAAAAAAMCQ8BIAAAAAAAAAAABgSHgJAAAAAAAAAAAAMCS8BAAAAAAAAAAAABgSXgIAAAAAAAAAAAAMCS8BAAAAAAAAAAAAhoSXAAAAAAAAAAAAAEPCSwAAAAAAAAAAAIAh4SUAAAAAAAAAAADAkPASAAAAAAAAAAAAYEh4CQAAAAAAAAAAADAkvAQAAAAAAAAAAAAYEl4CAAAAAAAAAAAADAkvAQAAAAAAAAAAAIaElwAAAAAAAAAAAABDwksAAAAAAAAAAACAIeElAAAAAAAAAAAAwJDwEgAAAAAAAAAAAGBIeAkAAAAAAAAAAAAwJLwEAAAAAAAAAAAAGBJeAgAAAAAAAAAAAAwJLwEAAAAAAAAAAACGhJcAAAAAAAAAAAAAQ8JLAAAAAAAAAAAAgCHhJQAAAAAAAAAAAMCQ8BIAAAAAAAAAAABgSHgJAAAAAAAAAAAAMCS8BAAAAAAAAAAAABgSXgIAAAAAAAAAAAAMCS8BAAAAAAAAAAAAhoSXAAAAAAAAAAAAAEPCSwAAAAAAAAAAAIAh4SUAAAAAAAAAAADAkPASAAAAAAAAAAAAYEh4CQAAAADAvlZVl1TVR6vq/cv9VVX1karaqqo/qKpLl/WvWu63ludXXsxzAwDAhZh1AWA9CS8BAAAAANjv3pbkoW33707ynu7+5iSPJ7llWb8lyePL+nuWfQAAsM7MugCwhoSXAAAAAADsW1V1KMn3JvmN5b6SvCrJ+5YtdyR57XJ943Kf5fl1y34AAFg7Zl0AWF/CSwAAAAAA9rNfTvLjSf57uX9Bks9395PL/ckkB5frg0keSZLl+RPLfgAAWEdmXQBYU8JLAAAAAAD2par6viSPdvff7sJnH62qE1V14vTp06v+eAAAeFq7NeuacwFgNYSXAAAAAADsV69IckNVfTLJnTnz2sVfSXJZVR1Y9hxKcmq5PpXkcJIsz78+yWPn+uDuvq27N7t7c2NjY/f+CwAA4Nx2ZdY15wLAaggvAQAAAADYl7r7Hd19qLuvTHJTkg919w8kuTfJ65ZtNye5e7k+ttxnef6h7u49PDIAAIyYdQFgvQkvAQAAAAB4rvmJJG+vqq0kL0hy+7J+e5IXLOtvT3LrRTofAAA8U2ZdAFgDBy68BQAAAAAA1lt3fzjJh5frh5Ncc449X0zy+j09GAAAPEtmXQBYP77xEgAAAAAAAAAAAGBIeAkAAAAAAAAAAAAwJLwEAAAAAAAAAAAAGBJeAgAAAAAAAAAAAAwJLwEAAAAAAAAAAACGhJcAAAAAAAAAAAAAQ8JLAAAAAAAAAAAAgCHhJQAAAAAAAAAAAMCQ8BIAAAAAAAAAAABgSHgJAAAAAAAAAAAAMCS8BAAAAAAAAAAAABgSXgIAAAAAAAAAAAAMCS8BAAAAAAAAAAAAhoSXAAAAAAAAAAAAAEPCSwAAAAAAAAAAAIAh4SUAAAAAAAAAAADAkPASAAAAAAAAAAAAYEh4CQAAAAAAAAAAADAkvAQAAAAAAAAAAAAYEl4CAAAAAAAAAAAADAkvAQAAAAAAAAAAAIaElwAAAAAAAAAAAABDwksAAAAAAAAAAACAIeElAAAAAAAAAAAAwJDwEgAAAAAAAAAAAGBIeAkAAAAAAAAAAAAwJLwEAAAAAAAAAAAAGBJeAgAAAAAAAAAAAAwJLwEAAAAAAAAAAACGhJcAAAAAAAAAAAAAQ8JLAAAAAAAAAAAAgCHhJQAAAAAAAAAAAMCQ8BIAAAAAAAAAAABgSHgJAAAAAAAAAAAAMCS8BAAAAAAAAAAAABgSXgIAAAAAAAAAAAAMCS8BAAAAAAAAAAAAhoSXAAAAAAAAAAAAAEPCSwAAAAAAAAAAAIAh4SUAAAAAAAAAAADAkPASAAAAAAAAAAAAYEh4CQAAAAAAAAAAADAkvAQAAAAAAAAAAAAYEl4CAAAAAAAAAAAADAkvAQAAAAAAAAAAAIaElwAAAAAAAAAAAABDwksAAAAAAAAAAACAIeElAAAAAAAAAAAAwJDwEgAAAAAAAAAAAGBIeAkAAAAAAAAAAAAwJLwEAAAAAAAAAAAAGBJeAgAAAAAAAAAAAAwJLwEAAAAAAAAAAACGRuFlVV1fVZ+oqq2quvVp9n1/VXVVba7uiAAAsHvMugAAAAAAAADsxAXDy6q6JMl7k7w6ydVJ3lhVV59j3/OSvC3JR1Z9SAAA2A1mXQAAAAAAAAB2avKNl9ck2eruh7v7y0nuTHLjOfb9bJJ3J/niCs8HAAC7yawLAAAAAAAAwI5MwsuDSR7Zdn9yWftfVfXyJIe7+89WeDYAANhtZl0AAAAAAAAAdmQSXj6tqvqKJL+U5EcHe49W1YmqOnH69Oln+08DAMCuMusCAAAAAAAAcLZJeHkqyeFt94eWtac8L8m3JvlwVX0yybVJjlXV5tkf1N23dfdmd29ubGw881MDAMBqmHUBAAAAAAAA2JFJeHl/kiNVdVVVXZrkpiTHnnrY3U909wu7+8ruvjLJfUlu6O4Tu3JiAABYHbMuAAAAAAAAADtywfCyu59M8tYkH0jyUJK7uvuBqnpXVd2w2wcEAIDdYtYFAAAAAAAAYKcOTDZ19/Ekx89ae+d59r7y2R8LAAD2hlkXAAAAAAAAgJ2YvGocAAAAAAAAAAAAgAgvAQAAAAAAAAAAAMaElwAAAAAAAAAAAABDwksAAAAAAAAAAACAIeElAAAAAAD7UlV9dVX9TVX9fVU9UFU/s6xfVVUfqaqtqvqDqrp0Wf+q5X5reX7lxTw/AACcj1kXANab8BIAAAAAgP3qS0le1d0vSfLSJNdX1bVJ3p3kPd39zUkeT3LLsv+WJI8v6+9Z9gEAwDoy6wLAGhNeAgAAAACwL/UZ/7HcfuXy00leleR9y/odSV67XN+43Gd5fl1V1R4dFwAAxsy6ALDehJcAAAAAAOxbVXVJVX0syaNJPpjkX5J8vrufXLacTHJwuT6Y5JEkWZ4/keQFkSKklwAAIABJREFUe3tiAACYMesCwPoSXgIAAAAAsG91939190uTHEpyTZJvWcXnVtXRqjpRVSdOnz69io8EAIAd2Y1Z15wLAKshvAQAAAAAYN/r7s8nuTfJdyS5rKoOLI8OJTm1XJ9KcjhJludfn+Sx83zebd292d2bGxsbu3p2AAB4Oqucdc25ALAawksAAAAAAPalqtqoqsuW669J8t1JHsqZX0q/btl2c5K7l+tjy32W5x/q7t67EwMAwIxZFwDW24ELbwEAAAAAgLX0oiR3VNUlOfNFA3d19/ur6sEkd1bVzyX5aJLbl/23J/mdqtpK8rkkN12MQwMAwIBZFwDWmPASAAAAAIB9qbs/nuRl51h/OMk151j/YpLX78HRAADgWTHrAsB686pxAAAAAAAAAAAAgCHhJQAAAAAAAAAAAMCQ8BIAAAAAAAAAAABgSHgJAAAAAAAAAAAAMCS8BAAAAAAAAAAAABgSXgIAAAAAAAAAAAAMCS8BAAAAAAAAAAAAhoSXAAAAAAAAAAAAAEPCSwAAAAAAAAAAAIAh4SUAAAAAAAAAAADAkPASAAAAAAAAAAAAYEh4CQAAAAAAAAAAADAkvAQAAAAAAAAAAAAYEl4CAAAAAAAAAAAADAkvAQAAAAAAAAAAAIaElwAAAAAAAAAAAABDwksAAAAAAAAAAACAIeElAAAAAAAAAAAAwJDwEgAAAAAAAAAAAGBIeAkAAAAAAAAAAAAwJLwEAAAAAAAAAAAAGBJeAgAAAAAAAAAAAAwJLwEAAAAAAAAAAACGhJcAAAAAAAAAAAAAQ8JLAAAAAAAAAAAAgCHhJQAAAAAAAAAAAMCQ8BIAAAAAAAAAAABgSHgJAAAAAAAAAAAAMCS8BAAAAAAAAAAAABgSXgIAAAAAAAAAAAAMCS8BAAAAAAAAAAAAhoSXAAAAAAAAAAAAAEPCSwAAAAAAAAAAAIAh4SUAAAAAAAAAAADAkPASAAAAAAAAAAAAYEh4CQAAAAAAAAAAADAkvAQAAAAAAAAAAAAYEl4CAAAAAAAAAAAADAkvAQAAAAAAAAAAAIaElwAAAAAAAAAAAABDwksAAAAAAAAAAACAIeElAAAAAAAAAAAAwJDwEgAAAAAAAAAAAGBIeAkAAAAAAAAAAAAwJLwEAAAAAAAAAAAAGBJeAgAAAAAAAAAAAAwJLwEAAAAAAAAAAACGhJcAAAAAAAAAAAAAQ8JLAAAAAAAAAAAAgCHhJQAAAAAAAAAAAMCQ8BIAAAAAAAAAAABgSHgJAAAAAAAAAAAAMCS8BAAAAAAAAAAAABgSXgIAAAAAAAAAAAAMCS8BAAAAAAAAAAAAhoSXAAAAAAAAAAAAAEPCSwAAAAAAAAAAAIAh4SUAAAAAAAAAAADAkPASAAAAAAAAAAAAYEh4CQAAAAAAAAAAADAkvAQAAAAAAAAAAAAYEl4CAAAAAAAAAAAADAkvAQAAAAAAAAAAAIaElwAAAAAAAAAAAABDwksAAAAAAAAAAACAIeElAAAAAAAAAAAAwJDwEgAAAACAfamqDlfVvVX1YFU9UFVvW9a/oao+WFX/vPz5/GW9qupXq2qrqj5eVS+/uP8FAABwbmZdAFhvwksAAAAAAParJ5P8aHdfneTaJG+pqquT3Jrknu4+kuSe5T5JXp3kyPJzNMmv7f2RAQBgxKwLAGtMeAkAAAAAwL7U3Z/u7r9brv89yUNJDia5Mckdy7Y7krx2ub4xyW/3GfcluayqXrTHxwYAgAsy6wLAehNeAgAAAACw71XVlUleluQjSS7v7k8vjz6T5PLl+mCSR7b9tZPLGgAArC2zLgCsH+ElAAAAAAD7WlV9XZI/SvIj3f1v2591dyfpZ/CZR6vqRFWdOH369IpOCgAAO7PqWdecCwCrIbwEAAAAAGDfqqqvzJlfRP9ud//xsvzZp16ruPz56LJ+KsnhbX/90LL2/3T3bd292d2bGxsbu3N4AAB4Grsx65pzAWA1hJcAAAAAAOxLVVVJbk/yUHf/0rZHx5LcvFzfnOTubetvqjOuTfLEttc0AgDA2jDrAsB6O3CxDwAAAAAAAM/QK5L8UJJ/qKqPLWs/meTnk9xVVbck+VSSNyzPjid5TZKtJF9I8ua9PS4AAIyZdQFgjQkvAQAAAADYl7r7r5LUeR5fd479neQtu3ooAABYAbMuAKw3rxoHAAAAAAAAAAAAGBJeAgAAAAAAAAAAAAwJLwEAAAAAAAAAAACGhJcAAAAAAAAAAAAAQ8JLAAAAAAAAAAAAgCHhJQAAAAAAAAAAAMCQ8BIAAAAAAAAAAABgSHgJAAAAAAAAAAAAMCS8BAAAAAAAAAAAABgSXgIAAAAAAAAAAAAMCS8BAAAAAAAAAAAAhoSXAAAAAAAAAAAAAEPCSwAAAAAAAAAAAIAh4SUAAAAAAAAAAADAkPASAAAAAAAAAAAAYEh4CQAAAAAAAAAAADAkvAQAAAAAAAAAAAAYEl4CAAAAAAAAAAAADAkvAQAAAAAAAAAAAIaElwAAAAAAAAAAAABDwksAAAAAAAAAAACAIeElAAAAAAAAAAAAwNAovKyq66vqE1W1VVW3nuP526vqwar6eFXdU1XftPqjAgDA6pl1AQAAAAAAANiJC4aXVXVJkvcmeXWSq5O8saquPmvbR5Nsdve3J3lfkl9Y9UEBAGDVzLoAAAAAAAAA7NTkGy+vSbLV3Q9395eT3Jnkxu0buvve7v7CcntfkkOrPSYAAOwKsy4AAAAAAAAAOzIJLw8meWTb/cll7XxuSfLnz+ZQAACwR8y6AAAAAAAAAOzIgVV+WFX9YJLNJN95nudHkxxNkiuuuGKV/zQAAOwqsy4AAAAAAAAAyewbL08lObzt/tCy9n9U1Xcl+akkN3T3l871Qd19W3dvdvfmxsbGMzkvAACsklkXAAAAAAAAgB2ZhJf3JzlSVVdV1aVJbkpybPuGqnpZkl/PmV9EP7r6YwIAwK4w6wIAAAAAAACwIxcML7v7ySRvTfKBJA8luau7H6iqd1XVDcu2X0zydUn+sKo+VlXHzvNxAACwNsy6AAAAAAAAAOzUgcmm7j6e5PhZa+/cdv1dKz4XAADsCbMuAAAAAAAAADsxedU4AAAAAAAAAAAAABFeAgAAAAAAAAAAAIwJLwEAAAAAAAAAAACGhJcAAAAAAAAAAAAAQ8JLAAAAAAAAAAAAgCHhJQAAAAAAAAAAAMCQ8BIAAAAAAAAAAABgSHgJAAAAAAAAAAAAMCS8BAAAAAAAAAAAABgSXgIAAAAAAAAAAAAMCS8BAAAAAAAAAAAAhoSXAAAAAAAAAAAAAEPCSwAAAAAAAAAAAIAh4SUAAAAAAAAAAADAkPASAAAAAAAAAAAAYEh4CQAAAAAAAAAAADAkvAQAAAAAAAAAAAAYEl4CAAAAAAAAAAAADAkvAQAAAAAAAAAAAIaElwAAAAAAAAAAAABDwksAAAAAAAAAAACAIeElAAAAAAAAAAAAwJDwEgAAAAAAAAAAAGBIeAkAAAAAAAAAAAAwJLwEAAAAAAAAAAAAGBJeAgAAAAAAAAAAAAwJLwEAAAAAAAAAAACGhJcAAAAAAAAAAAAAQ8JLAAAAAAAAAAAAgCHhJQAAAAAAAAAAAMCQ8BIAAAAAAAAAAABgSHgJAAAAAAAAAAAAMCS8BAAAAAAAAAAAABgSXgIAAAAAAAAAAAAMCS8BAAAAAAAAAAAAhoSXAAAAAADsW1X1m1X1aFX947a1b6iqD1bVPy9/Pn9Zr6r61araqqqPV9XLL97JAQDg/My5ALDehJcAAAAAAOxnv5Xk+rPWbk1yT3cfSXLPcp8kr05yZPk5muTX9uiMAACwU78Vcy4ArC3hJQAAAAAA+1Z3/2WSz521fGOSO5brO5K8dtv6b/cZ9yW5rKpetDcnBQCAOXMuAKw34SUAAAAAAM81l3f3p5frzyS5fLk+mOSRbftOLmsAALAfmHMBYE0ILwEAAAAAeM7q7k7SO/17VXW0qk5U1YnTp0/vwskAAOCZM+cCwMUlvAQAAAAA4Lnms0+9WnH589Fl/VSSw9v2HVrW/p/uvq27N7t7c2NjY1cPCwAAQ+ZcAFgTwksAAAAAAJ5rjiW5ebm+Ocnd29bfVGdcm+SJba9qBACAdWfOBYA1ceBiHwAAAAAAAJ6pqvr9JK9M8sKqOpnkp5P8fJK7quqWJJ9K8oZl+/Ekr0myleQLSd685wcGAIABcy4ArDfhJQAAAAAA+1Z3v/E8j647x95O8pbdPREAADx75lwAWG9eNQ4AAAAAAAAAAAAwJLwEAAAAAAAAAAAAGBJeAgAAAAAAAAAAAAwJLwEAAAAAAAAAAACGhJcAAAAAAAAAAAAAQ8JLAAAAAAAAAAAAgCHhJQAAAAAAAAAAAMCQ8BIAAAAAAAAAAABgSHgJAAAAAAAAAAAAMCS8BAAAAAAAAAAAABgSXgIAAAAAAAAAAAAMCS8BAAAAAAAAAAAAhoSXAAAAAAAAAAAAAEPCSwAAAAAAAAAAAIAh4SUAAAAAAAAAAADAkPASAAAAAAAAAAAAYEh4CQAAAAAAAAAAADAkvAQAAAAAAAAAAAAYEl4CAAAAAAAAAAAADAkvAQAAAAAAAAAAAIaElwAAAAAAAAAAAABDwksAAAAAAAAAAACAIeElAAAAAAAAAAAAwJDwEgAAAAAAAAAAAGBIeAkAAAAAAAAAAAAwJLwEAAAAAAAAAAAAGBJeAgAAAAAAAAAAAAwJLwEAAAAAAAAAAOB/2rvzcMvOOV/g358kBAkhwUMS4hJaWhPaEJfWiEvEEN2GJ9o8j910m2K63VzDRV9aP8aYEmMQU9HacGNqmpAmjQgtYshEEAkxREt+94+1qu/OyalT61TVOVVnn8/neeqpvdew97vft9Y+31Xrd94FEym8BAAAAAAAAAAAAJhI4SUAAAAAAAAAAADARAovAQAAAAAAAAAAACZSeAkAAAAAAAAAAAAwkcJLAAAAAAAAAAAAgIkUXgIAAAAAAAAAAABMpPASAAAAAAAAAAAAYCKFlwAAAAAAAAAAAAATKbwEAAAAAAAAAAAAmEjhJQAAAAAAAAAAAMBECi8BAAAAAAAAAAAAJlJ4CQAAAAAAAAAAADCRwksAAAAAAAAAAACAiRReAgAAAAAAAAAAAEyk8BIAAAAAAAAAAABgIoWXAAAAAAAAAAAAABMpvAQAAAAAAAAAAACYSOElAAAAAAAAAAAAwEQKLwEAAAAAAAAAAAAmUngJAAAAAAAAAAAAMJHCSwAAAAAAAAAAAICJFF4CAAAAAAAAAAAATKTwEgAAAAAAAAAAAGAihZcAAAAAAAAAAAAAEym8BAAAAAAAAAAAAJhI4SUAAAAAAAAAAADARAovAQAAAAAAAAAAACZSeAkAAAAAAAAAAAAwkcJLAAAAAAAAAAAAgIkUXgIAAAAAAAAAAABMpPASAAAAAAAAAAAAYCKFlwAAAAAAAAAAAAATKbwEAAAAAAAAAAAAmEjhJQAAAAAAAAAAAMBECi8BAAAAAAAAAAAAJlJ4CQAAAAAAAAAAADCRwksAAAAAAAAAAACAiRReAgAAAAAAAAAAAEw0qfCyqg6pqm9X1SlVdcQi6y9TVe8a1x9fVftt64YCAMBKkHUBAGD92dx5AAAArFWyLgCsjs0WXlbVTkleleQuSQ5Icr+qOmDBZg9P8vPuvm6Slyd58bZuKAAAbGuyLgAArD8TzwMAAGDNkXUBYPVMmfHyFklO6e5Tu/t3SY5JctiCbQ5LcvT4+NgkB1dVbbtmAgDAipB1AQBg/ZlyHgAAAGuRrAsAq2TnCdvsneS0meenJ7nlprbp7t9X1XlJ9kzy09mNqupRSR41Pr2gqr6xJY1mh7VXFow5a5rxnC/Gc/4Y0/ly/e3dgHVM1mUK37nzx5jOF+M5f4zpfJF12RFNOQ+Q8beM7/Dp9NV0+mo6fTWdvppuSl9dazUaAkyy2awr524xPzum01fT6avp9NV0+mqarc65Uwovt5nuPjLJkUlSVSd0981W8/1ZWcZ0vhjP+WI8548xnS9VdcL2bgNbT9adX8Zz/hjT+WI8548xnS+yLmuZjL98+mk6fTWdvppOX02nr6bTVzB/5Nwto6+m01fT6avp9NV0+mqabdFPU241fkaSfWee7zMuW3Sbqto5yRWT/GxrGgYAAKtA1gUAgPVnynkAAACsRbIuAKySKYWXX06yf1Vdu6ouneTwJBsWbLMhyYPHx/dO8snu7m3XTAAAWBGyLgAArD9TzgMAAGAtknUBYJVs9lbj3f37qnpCko8l2SnJm7r7pKp6XpITuntDkjcmeWtVnZLknAw/vDfnyK1oNzsmYzpfjOd8MZ7zx5jOF+O5nci6TGQ8548xnS/Gc/4Y0/liPNnhbOo8YDO7+bc8jX6aTl9Np6+m01fT6avp9BWsIVuQdR3j0+mr6fTVdPpqOn01nb6aZqv7qUzWAwAAAAAAAAAAADDNlFuNAwAAAAAAAAAAABCFlwAAAAAAAAAAAACTrXjhZVUdUlXfrqpTquqIRdZfpqreNa4/vqr2W+k2seUmjOffVNU3q+prVXVcVV1re7ST6TY3pjPb3auquqputprtY3mmjGdV3Xc8Tk+qqnesdhtZngnfu9esqk9V1VfH795Dt0c7maaq3lRVZ1fVNzaxvqrqH8fx/lpV3XS128jyyLrzRdadL3Lu/JF154ucO1/kXObZ1EyxXix2vFfVlavqE1X1nfHvK43L1/WxX1X7jj/LNmaTJ47L9deMqtq1qr5UVf8+9tNzx+XXHs+jTxnPqy89Ll/359lVtdOYkT48PtdXi6iq71fV16vqxKo6YVzm+FtEVe1RVcdW1beq6uSqupW+gvVB1r04WXcaOXc6WXf5ZN1pZN3pVjrrrmjhZVXtlORVSe6S5IAk96uqAxZs9vAkP+/u6yZ5eZIXr2Sb2HITx/OrSW7W3TdKcmySl6xuK1mOiWOaqto9yROTHL+6LWQ5poxnVe2f5BlJbt3df5jkSaveUCabeIw+O8m7u/smSQ5P8urVbSXLdFSSQ5ZYf5ck+49/HpXkNavQJraQrDtfZN35IufOH1l3vsi5c+moyLnMoamZYp05Kpc83o9Iclx375/kuPF54tj/fZInd/cBSQ5K8vjx34/+urgLktyhu2+c5MAkh1TVQRnOn18+nk//PMP5deI8OxnOYU6eea6vNu323X1gd2/8RTvH3+JekeSj3f0HSW6c4d+XvoI5J+su6qjIulPIudPJussn604n606zoll3pWe8vEWSU7r71O7+XZJjkhy2YJvDkhw9Pj42ycFVVSvcLrbMZsezuz/V3b8en34xyT6r3EaWZ8oxmiT/K8MPqt+uZuNYtinj+cgkr+runydJd5+9ym1keaaMaSe5wvj4iknOXMX2sUzd/dkk5yyxyWFJ3tKDLybZo6quvjqtYwvIuvNF1p0vcu78kXXni5w7Z+Rc5tjUTLFubOJ4nz3vOTrJPWeWr9tjv7vP6u6vjI9/meHizt7RXxczft7zx6e7jH86yR0ynEcnl+yndXueXVX7JLlrkjeMzyv6ajkcfwtU1RWT3DbJG5Oku3/X3edGX8F6IOsuIOtOI+dOJ+suj6y71RyDC6xG1l3pwsu9k5w28/z0cdmi23T375Ocl2TPFW4XW2bKeM56eJJ/XtEWsbU2O6bj1Ln7dvc/rWbD2CJTjtHrJbleVX2+qr5YVUvNSML2N2VM/y7JA6rq9CQfSfKXq9M0Vshyf9ayfcm680XWnS9y7vyRdeeLnLv+yLmsVf7tTnO17j5rfPyjJFcbH+u/0Xjbu5tkmGldfy0w3k7wxCRnJ/lEku8mOXc8j04u3hfr/Tz7H5I8LclF4/M9o682pZN8vKr+raoeNS5z/F3StZP8JMmbx9t6vqGqLh99BeuB43ka34dLkHM3T9ZdFll3Oll3mhXPuitdeMk6VVUPSHKzJC/d3m1hy1XVpZK8LMmTt3db2GZ2zjAt8u2S3C/J66tqj+3aIrbW/ZIc1d37JDk0yVvHYxeAFSLrrn1y7tySdeeLnAuwBnV3Z7gAxKiqdkvy3iRP6u5fzK7TX4PuvrC7D8xwV4FbJPmD7dykHVJV3S3J2d39b9u7LWvEbbr7phluF/j4qrrt7ErH33/ZOclNk7ymu2+S5Ff5/7daTKKvADbyfXhxcu40su40su6yybrTrHjWXen/sD4jyb4zz/cZly26TVXtnOH2UT9b4XaxZaaMZ6rqjkmeleQe3X3BKrWNLbO5Md09yQ2TfLqqvp/koCQbqupmq9ZClmPKMXp6kg3d/Z/d/b0k/5Hh4jQ7pilj+vAk706S7v5Ckl2T7LUqrWMlTPpZyw5D1p0vsu58kXPnj6w7X+Tc9UfOZa3yb3eaH2+89db499nj8nXff1W1S4aL0W/v7veNi/XXJoy3fPtUkltluKXbzuOq2b5Yz+fZt05yj/Ec5pgMt118RfTVorr7jPHvs5O8P0Ohg+Pvkk5Pcnp3Hz8+PzbDxWl9BfPP8TyN78NFyLnLJ+tulqy7DLLuZCuedVe68PLLSfavqmtX1aWTHJ5kw4JtNiR58Pj43kk+OVaTsuPZ7HhW1U2SvC7DheizF3kNdixLjml3n9fde3X3ft29X5IvZhjbE7ZPc9mMKd+5H8gwA1Cqaq8Mt2M8dTUbybJMGdMfJjk4SarqBhkuSP9kVVvJtrQhyYNqcFCS82amOWfHI+vOF1l3vsi580fWnS9y7voj57JWTfm+4uLnPQ9O8sGZ5ev22K+qSvLGJCd398tmVumvGVV1lY2zlFfVZZP8jyQnZ7gofe9xs4X9tC7Ps7v7Gd29z3gOc3iGz37/6KtLqKrLV9XuGx8nuVOSb8Txdwnd/aMkp1XV9cdFByf5ZvQVrAey7jS+DxeQc6eTdaeTdaeTdadbjay781Irt1Z3/76qnpDkY0l2SvKm7j6pqp6X5ITu3pDhC/mtVXVKknMyHEDsgCaO50uT7JbkPcPP2/ywu++x3RrNkiaOKWvExPH8WJI7VdU3k1yY5KndvW5+82OtmTimT85wG82/zjAF9kPWS6hci6rqnRkKQvaqqtOT/G2SXZKku1+b5CMZbqV5SpJfJ3no9mkpU8i680XWnS9y7vyRdeeLnDt/5Fzm1aa+r7Zzs7arTRzv/zvJu6vq4Ul+kOS+4+br/di/dZIHJvl6VZ04Lntm9NdCV09ydFXtlGGykHd394fHTHdMVT0/yVcznF8nzrMX8/Toq4WuluT947n7zkne0d0fraovx/G3mL9M8vax8OrUDJ//UtFXMNdk3UuSdSeTc6eTdbeerHtJsu7yrGjWLf9nDQAAAAAAAAAAADDNSt9qHAAAAAAAAAAAAGBuKLwEAAAAAAAAAAAAmEjhJQAAAAAAAAAAAMBECi8BAAAAAAAAAAAAJlJ4CQAAAAAAAAAAADCRwksAAAAAAAAAAACAiRReAgAAAAAAAAAAAEyk8BIAAAAAAAAAAABgIoWXAAAAAAAAAAAAABMpvAQAAAAAAAAAAACYSOElAAAAAAAAAAAAwEQKLwEAAAAAAAAAAAAmUngJAAAAAAAAAAAAMJHCSwAAAAAAAAAAAICJFF4CAAAAAAAAAAAATKTwEgAAAAAAAAAAAGAihZcAAAAAAAAAAAAAEym8BAAAAAAAAAAAAJhI4SUAAAAAAAAAAADARAovAQAAAAAAAAAAACZSeAkAAAAAAAAAAAAwkcJLAAAAAAAAAAAAgIkUXgIAAAAAAAAAAABMpPASAAAAAAAAAAAAYCKFlwAAAAAAAAAAAAATKbwEAAAAAAAAAAAAmEjhJQAAAAAAAAAAAMBECi8BAAAAAAAAAAAAJlJ4CQAAAAAAAAAAADCRwksAAAAAAAAAAACAiRReAgAAAAAAAAAAAEyk8BIAAAAAAAAAAABgIoWXAAAAAAAAAAAAABMpvAQAAAAAAGCbq6ququuu0Gt/v6ruuIl1t6uq01fifQEAWH1LZb/N7LffmEl3XsY+z6yqN2zrtmzitR5SVZ9bYv2nq+oR2+K9gG1P4SUAAAAAAMA6sS0vFG8rW3JBfAXbcvuq+lRVnVdV398Gr/e2qjqrqn5RVf8x9cJ5Ve1VVZ+vqp9V1blV9YWquvXWtgcAgKV19wu7e4uKHavqqKp6/rZu05aoqiOr6ttVdVFVPWQrX+v2VfX1MZf+rKreX1V7T9z3r6vq1DEPn1lVL98Rcj9sCwovAQAAAAAA2GbW+IXUXyV5U5KnbqPXe1GS/br7CknukeT5VfXHE/Y7P8nDklwlyZWSvDjJh9Z43wIA7NDmLGv9e5LHJfnKNnitbya5c3fvkeQaSb6T5DUT992Q5KZjHr5hkhsn+att0CbY7hReAgAAAAAArCHjrJVPqaqvjTMzvquqdp1Zf7eqOnGckeZfq+pG4/K3JrlmhgK+86vqaVV1dFU9eVy/9zjz5OPH59epqnOq6lLj80dW1Snjsg1VdY2Z9+yqenxVfSfDhdiFbb5NVZ1WVbdb5CN9dvz73LFdtxrf+5PjjDo/raq3V9UeC/a7eVV9s6p+XlVvnu2DBe99jap6b1X9pKq+V1WbvNDb3V/q7rcmOXVT2yxHd5/U3RdsfDr+uc7YrqdX1fEbL/BX1WOr6qSq2rW7f9vd3+7ui5JUkgszFGBeeVu0CwBgDTpwsfxbVd+oqrtv3Kiqdhnz401m9n3YONviWVX1lJlt/66qjh1nKf9FkoeMy942s80Dq+oHYy591qYaV1WPSnL/JE8bM+2HxuVHVNV3q+qXY3b9s0vuWq8cP9e3qurgJd7jYVV18ph/P1ZV19rUtt39qu4+LslvN7XNVN394+4+c2bRhUmuO7bpylV1+sYxqKrdxnOGB437fre7z934EZJctHFfWOsUXgIAAAAAAKw9901ySJJrJ7lRkockyXiB+U1JHp1kzySvS7Khqi5MjRzvAAAIeklEQVTT3Q9M8sMkd+/u3br7JUk+k+R242v+aYaCw9vOPP+X7r6oqu6QYfbG+ya5epIfJDlmQZvumeSWSQ6YXVhVhyR5Z5J7dfenF/ksG99vj7FdX8hwUfZFGWbUuUGSfZP83YL97p/kzhkKGa+X5NkLX3gsGv1Qhhl/9k5ycJInVdWdF2nHiqiqV1fVr5N8K8lZST4yrnppkguSPLuq9k/ywiQP6O7fzuz7tQwXyzckeUN3n71a7QYA2MEsmn+TvCXJA2a2OzTJWd391Zllt0+yf5I7JXl6Vd1xZt1hSY5NskeSt8++YVUdkGFmxwdmyKV7JtlnscZ195Hj/i8ZM+3GYtDvJvmTJFdM8twkb6uqq8/sestxm72S/G2S91XVJX7ZpqoOS/LMJH+eYVb0f8mQsVdFVV2zqs5N8pskT0nykiTp7nMyzNT++qq6apKXJzmxu98ys+9fjIWtP80w4+XrVqvdsJIUXgIAAAAAAKw9/9jdZ44XOj+U5MBx+aOSvK67j+/uC7v76AzFfQdt4nU+k+Q2Y4HibTNcQL31uO5Px/XJUOT4pu7+yjiD4zOS3Kqq9pt5rRd19znd/ZuZZffJcGH1Lt39pakfrrtP6e5PdPcF3f2TJC8b2zPrld192tgHL0hyv0Ve6uZJrtLdz+vu33X3qUlen+TwqW3ZWt39uCS7Z7jg/r4M45FxNssHZbjV4oYMF+m/umDfGyW5QpK/SPK51WozAMAOaFP5921JDq2qK4zPH5jkrQv2fW53/6q7v57kzbl4bvxCd3+guy9akGOT5N5JPtzdnx0z8HMyzNg4WXe/Z2z3Rd39rgyzw99iZpOzk/xDd//nuP7bSe66yEs9JkPePrm7f5/hl3YOXGrWy22pu3843mp8rwy/8PStmXUfT/KeJMdlKHx99IJ93zHeavx6SV6b5Mer0WZYaQovAQAAAAAA1p4fzTz+dZLdxsfXSvLk8Tbj546z0uybYYaeS+ju7yb5VYYL13+S5MNJzqyq6+fihZfXyDDL5cb9zk/yswyzSG502iJv8aQk7+7ubyznw1XV1arqmKo6Y5wd520ZLvLOmn2/H2Txz3itJNdY0B/PTHK15bRnE2187XgbyfOr6plLbTsWwX4uwwxJj51Z/v0kn0qyX5JXbWLf33b3O5McUVU33tp2AwCsUYvm3/EW2J9Pcq+q2iPJXbJg5sosnRsXy7AbXWN2fXf/KkMGnqyqHlRVJ85k0Rvm4rn2jO7uJdq30bWSvGLmdc7JMEv83otsu5z2XXMm056/ue3Hwtejk3ywqnaeWXVkhs92VHcv2kfd/Z0kJyV59da0GXYUCi8BAAAAAADmx2lJXtDde8z8udxYuJckvcg+n8kwm8+lu/uM8fmDk1wpyYnjNmdmuNibJKmqy2e41eIZM6+z2GvfJ8k9q+qJS7R5sf1eOC7/o3F2nAdkuLA8a9+Zx9cc27jQaUm+t6A/du/uQ5dozyTd/ZjxNpK7dfcLJ+62c4ZboydJququSW6VYXagl25m312S/LctaiwAwHw7OkNevE+GGSzPWLB+qdy4WBbd6KzZfavqchky8KZc7LXG2Shfn+QJSfYcZ4z8Ri6ea/euqtnnS+XaRy/ItZft7n9doj2bNc5kuTHT7rb5PZIMmfaqGWZmT1XtlKHw8i1JHldV193MvtdZYj2sGQovAQAAAAAA5sfrkzymqm5Zg8tX1V2ravdx/Y9zyeK9z2S4GPzZ8fmnx+ef6+4Lx2XvTPLQqjqwqi6ToTDy+HHGxqWcmeTgJE+sqsduYpufZLhl42y7dk9yfpLzqmrvJE9dZL/HV9U+VXXlJM9K8q5FtvlSkl9W1dOr6rJVtVNV3bCqbr5YQ6rqUlW1a4Yix6qqXavq0pv5jIuqqqtW1eFVtdv4vnfOcFvL48b1eyV5Q5JHZCh0vXtVHTquO6iqblNVlx7b/fQMs3QevyVtAQCYcx9IctMkT8xQ/LfQc6rqclX1h0kemsVz42KOTXK3jbksyfOydK3Vwqx9+QzFmD9Jkqp6aIZZIWddNclfVdUuVXWfJDdI8pFFXvu1SZ4xfoZU1RXH7Rc15shdMxR57jLm2i2qE6uqP6+q649Z+SpJXpbkq+Psl8kwo3wneViGXyZ6y1iMmap6RFVddXx8QJJnZMzDsNYpvAQAAAAAAJgT3X1CkkcmeWWSnyc5JclDZjZ5UZJnj7cofMq47DMZCh03Fl5+LsnlZp6nu/9vkuckeW+GmX+uk+TwiW36YYbiyyOq6hGLrP91khck+fzYroOSPDfDxfPzkvxTkvct8tLvSPLxJKcm+W6S5y/y2hcmuVuGW6l/L8lPMxQ7XnETzb1tkt9kuNh9zfHxx6d8zkV0htuKn55hLP4+yZO6e8O4/sgkH+zuj4y3Y3x4kjdU1Z5JLpPh1uM/yzCr6KFJ7jreShMAgBnd/ZsMOfXaWTw3fiZDLj4uyd9396R8190nJXl8htx5VoZMd/oSu7wxyQFjpv1Ad38zyf9J8oUMRZl/lOG26LOOT7J/hpz6giT3XuxW3d39/iQvTnJMVf0iw8yZd1miLR/PkGX/e4bc+ZsMWXdL7J3ko0l+meTrGX5p6s+SpKr+OMnfJHnQmL1fnCEHHzHue+skX6+qX2XI2B/JUKgJa151LzVjLgAAAAAAAAAAwI6rqv5nkut19wO2d1uA9WHn7d0AAAAAAAAAAACALVFVV84we/gDt3dbgPXDrcYBAAAAAAAAAIA1p6oemeS0JP/c3Z/d3u0B1g+3GgcAAAAAAAAAAACYyIyXAAAAAAAAAAAAABMpvAQAAAAAAAAAAACYSOElAAAAAAAAAAAAwEQKLwEAAAAAAAAAAAAmUngJAAAAAAAAAAAAMJHCSwAAAAAAAAAAAICJ/h+sePu96fabQgAAAABJRU5ErkJggg==\n" - }, - "metadata": {}, - "execution_count": 28 - } - ], + "execution_count": null, + "metadata": { + "tags": [] + }, + "outputs": [], "source": [ "\n", - "# Set up plots to be large enough for visualization\n", + "# Set up plotting options\n", + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", + "PLOT_HEIGHT = 12\n", + "\n", "row_count = max(max_tables, 1)\n", "plt.rcParams[\"figure.figsize\"] = [PLOT_HEIGHT * len(FLAVORS), PLOT_HEIGHT * row_count]\n", "fig, axes = plt.subplots(row_count, len(FLAVORS))\n", - "fig.suptitle('Side-by-side flavor comparison', fontsize=14, fontweight='bold')\n", + "plt.subplots_adjust(wspace=0, hspace=0) # Reduce margins to maximize the display zone\n", + "\n", + "fig.suptitle('Side-by-side flavor comparison', fontsize=24, fontweight='bold')\n", "for idx, flavor in enumerate(FLAVORS):\n", " parse = parses[flavor]\n", " tables = parse[\"tables\"]\n", @@ -229,12 +168,10 @@ " rows=table.shape[0],\n", " cols=table.shape[1],\n", " ), \n", - " size=12, ha=\"center\", \n", + " size=14, ha=\"center\", \n", " transform=ax.transAxes\n", " )\n", - " timer_after_plot = time.perf_counter()\n", - "\n", - "fig" + " timer_after_plot = time.perf_counter()" ] } ],