Remove ocr

pull/2/head
Vinayak Mehta 2018-09-01 16:23:54 +05:30
parent 9753889ea2
commit 72c42c74db
3 changed files with 1 additions and 518 deletions

View File

@ -1,3 +1,3 @@
__version__ = '1.2.0'
__all__ = ['pdf', 'lattice', 'stream', 'ocr']
__all__ = ['pdf', 'lattice', 'stream']

View File

@ -1,331 +0,0 @@
import os
import copy
import logging
import subprocess
import pyocr
from PIL import Image
from .table import Table
from .imgproc import (adaptive_threshold, find_lines, find_table_contours,
find_table_joints, remove_lines, find_cuts)
from .utils import merge_close_values, encode_list
__all__ = ['OCRLattice', 'OCRStream']
logger = logging.getLogger('app_logger')
class OCRLattice:
"""Lattice, but for images.
Parameters
----------
table_area : list
List of strings of the form x1,y1,x2,y2 where
(x1, y1) -> left-top and (x2, y2) -> right-bottom in OpenCV's
coordinate space, denoting table areas to analyze.
(optional, default: None)
mtol : list
List of ints specifying m-tolerance parameters.
(optional, default: [2])
blocksize : int
Size of a pixel neighborhood that is used to calculate a
threshold value for the pixel: 3, 5, 7, and so on.
(optional, default: 15)
threshold_constant : float
Constant subtracted from the mean or weighted mean
(see the details below). Normally, it is positive but may be
zero or negative as well.
(optional, default: -2)
dpi : int
Dots per inch.
(optional, default: 300)
layout : int
Tesseract page segmentation mode.
(optional, default: 7)
lang : string
Language to be used for OCR.
(optional, default: 'eng')
scale : int
Used to divide the height/width of a pdf to get a structuring
element for image processing.
(optional, default: 15)
iterations : int
Number of iterations for dilation.
(optional, default: 0)
debug : string
{'contour', 'line', 'joint', 'table'}
Set to one of the above values to generate a matplotlib plot
of detected contours, lines, joints and the table generated.
(optional, default: None)
"""
def __init__(self, table_area=None, mtol=[2], blocksize=15, threshold_constant=-2,
dpi=300, layout=7, lang="eng", scale=15, iterations=0, debug=None):
self.method = 'ocrl'
self.table_area = table_area
self.mtol = mtol
self.blocksize = blocksize
self.threshold_constant = threshold_constant
self.tool = pyocr.get_available_tools()[0] # fix this
self.dpi = dpi
self.layout = layout
self.lang = lang
self.scale = scale
self.iterations = iterations
self.debug = debug
def get_tables(self, pdfname):
if self.tool is None:
return None
bname, __ = os.path.splitext(pdfname)
imagename = ''.join([bname, '.png'])
logger.info('Processing {0}.'.format(os.path.basename(bname)))
gs_call = [
"-q", "-sDEVICE=png16m", "-o", imagename, "-r{0}".format(self.dpi),
pdfname
]
if "ghostscript" in subprocess.check_output(["gs", "-version"]).lower():
gs_call.insert(0, "gs")
else:
gs_call.insert(0, "gsc")
subprocess.call(gs_call, stdout=open(os.devnull, 'w'),
stderr=subprocess.STDOUT)
img, threshold = adaptive_threshold(imagename, blocksize=self.blocksize,
c=self.threshold_constant)
vmask, v_segments = find_lines(threshold, direction='vertical',
scale=self.scale, iterations=self.iterations)
hmask, h_segments = find_lines(threshold, direction='horizontal',
scale=self.scale, iterations=self.iterations)
if self.table_area is not None:
areas = []
for area in self.table_area:
x1, y1, x2, y2 = area.split(",")
x1 = int(float(x1))
y1 = int(float(y1))
x2 = int(float(x2))
y2 = int(float(y2))
areas.append((x1, y1, abs(x2 - x1), abs(y2 - y1)))
table_bbox = find_table_joints(areas, vmask, hmask)
else:
contours = find_table_contours(vmask, hmask)
table_bbox = find_table_joints(contours, vmask, hmask)
if self.debug:
self.debug_images = (img, table_bbox)
self.debug_segments = (v_segments, h_segments)
self.debug_tables = []
if len(self.mtol) == 1 and self.mtol[0] == 2:
mtolerance = copy.deepcopy(self.mtol) * len(table_bbox)
else:
mtolerance = copy.deepcopy(self.mtol)
page = {}
tables = {}
table_no = 0
for k in sorted(table_bbox.keys(), key=lambda x: x[1]):
table_data = {}
cols, rows = zip(*table_bbox[k])
cols, rows = list(cols), list(rows)
cols.extend([k[0], k[2]])
rows.extend([k[1], k[3]])
cols = merge_close_values(sorted(cols), mtol=mtolerance[table_no])
rows = merge_close_values(sorted(rows, reverse=True), mtol=mtolerance[table_no])
cols = [(cols[i], cols[i + 1])
for i in range(0, len(cols) - 1)]
rows = [(rows[i], rows[i + 1])
for i in range(0, len(rows) - 1)]
table = Table(cols, rows)
if self.debug:
self.debug_tables.append(table)
table.image = img[k[3]:k[1],k[0]:k[2]]
for i in range(len(table.cells)):
for j in range(len(table.cells[i])):
x1 = int(table.cells[i][j].x1)
y1 = int(table.cells[i][j].y1)
x2 = int(table.cells[i][j].x2)
y2 = int(table.cells[i][j].y2)
table.cells[i][j].image = img[y1:y2,x1:x2]
text = self.tool.image_to_string(
Image.fromarray(table.cells[i][j].image),
lang=self.lang,
builder=pyocr.builders.TextBuilder(tesseract_layout=self.layout)
)
table.cells[i][j].add_text(text)
ar = table.get_list()
ar.reverse()
ar = encode_list(ar)
table_data['data'] = ar
tables['table-{0}'.format(table_no + 1)] = table_data
table_no += 1
page[os.path.basename(bname)] = tables
if self.debug:
return None
return page
class OCRStream:
"""Stream, but for images.
Parameters
----------
table_area : list
List of strings of the form x1,y1,x2,y2 where
(x1, y1) -> left-top and (x2, y2) -> right-bottom in OpenCV's
coordinate space, denoting table areas to analyze.
(optional, default: None)
columns : list
List of strings where each string is comma-separated values of
x-coordinates in OpenCV's coordinate space.
(optional, default: None)
blocksize : int
Size of a pixel neighborhood that is used to calculate a
threshold value for the pixel: 3, 5, 7, and so on.
(optional, default: 15)
threshold_constant : float
Constant subtracted from the mean or weighted mean
(see the details below). Normally, it is positive but may be
zero or negative as well.
(optional, default: -2)
dpi : int
Dots per inch.
(optional, default: 300)
layout : int
Tesseract page segmentation mode.
(optional, default: 7)
lang : string
Language to be used for OCR.
(optional, default: 'eng')
line_scale : int
Line scaling factor.
(optional, default: 15)
char_scale : int
Char scaling factor.
(optional, default: 200)
"""
def __init__(self, table_area=None, columns=None, blocksize=15,
threshold_constant=-2, dpi=300, layout=7, lang="eng",
line_scale=15, char_scale=200, debug=False):
self.method = 'ocrs'
self.table_area = table_area
self.columns = columns
self.blocksize = blocksize
self.threshold_constant = threshold_constant
self.tool = pyocr.get_available_tools()[0] # fix this
self.dpi = dpi
self.layout = layout
self.lang = lang
self.line_scale = line_scale
self.char_scale = char_scale
self.debug = debug
def get_tables(self, pdfname):
if self.tool is None:
return None
bname, __ = os.path.splitext(pdfname)
imagename = ''.join([bname, '.png'])
logger.info('Processing {0}.'.format(os.path.basename(bname)))
gs_call = [
"-q", "-sDEVICE=png16m", "-o", imagename, "-r{0}".format(self.dpi),
pdfname
]
if "ghostscript" in subprocess.check_output(["gs", "-version"]).lower():
gs_call.insert(0, "gs")
else:
gs_call.insert(0, "gsc")
subprocess.call(gs_call, stdout=open(os.devnull, 'w'),
stderr=subprocess.STDOUT)
img, threshold = adaptive_threshold(imagename, blocksize=self.blocksize,
c=self.threshold_constant)
threshold = remove_lines(threshold, line_scale=self.line_scale)
height, width = threshold.shape
if self.debug:
self.debug_images = img
return None
if self.table_area is not None:
if self.columns is not None:
if len(self.table_area) != len(self.columns):
raise ValueError("{0}: Length of table area and columns"
" should be equal.".format(os.path.basename(bname)))
table_bbox = {}
for area in self.table_area:
x1, y1, x2, y2 = area.split(",")
x1 = int(float(x1))
y1 = int(float(y1))
x2 = int(float(x2))
y2 = int(float(y2))
table_bbox[(x1, y1, x2, y2)] = None
else:
table_bbox = {(0, 0, width, height): None}
page = {}
tables = {}
table_no = 0
for k in sorted(table_bbox.keys(), key=lambda x: x[1]):
if self.columns is None:
raise NotImplementedError
else:
table_data = {}
table_image = threshold[k[1]:k[3],k[0]:k[2]]
cols = self.columns[table_no].split(',')
cols = [float(c) for c in cols]
cols.insert(0, k[0])
cols.append(k[2])
cols = [(cols[i] - k[0], cols[i + 1] - k[0]) for i in range(0, len(cols) - 1)]
y_cuts = find_cuts(table_image, char_scale=self.char_scale)
rows = [(y_cuts[i], y_cuts[i + 1]) for i in range(0, len(y_cuts) - 1)]
table = Table(cols, rows)
for i in range(len(table.cells)):
for j in range(len(table.cells[i])):
x1 = int(table.cells[i][j].x1)
y1 = int(table.cells[i][j].y1)
x2 = int(table.cells[i][j].x2)
y2 = int(table.cells[i][j].y2)
table.cells[i][j].image = table_image[y1:y2,x1:x2]
cell_image = Image.fromarray(table.cells[i][j].image)
text = self.tool.image_to_string(
cell_image,
lang=self.lang,
builder=pyocr.builders.TextBuilder(tesseract_layout=self.layout)
)
table.cells[i][j].add_text(text)
ar = table.get_list()
ar.reverse()
ar = encode_list(ar)
table_data['data'] = ar
tables['table-{0}'.format(table_no + 1)] = table_data
table_no += 1
page[os.path.basename(bname)] = tables
return page

View File

@ -18,7 +18,6 @@ from PyPDF2 import PdfFileReader
from camelot.pdf import Pdf
from camelot.lattice import Lattice
from camelot.stream import Stream
from camelot.ocr import OCRLattice, OCRStream
from camelot import utils
@ -54,8 +53,6 @@ options:
camelot methods:
lattice Looks for lines between data.
stream Looks for spaces between data.
ocrl Lattice, but for images.
ocrs Stream, but for images.
See 'camelot <method> -h' for more information on a specific method.
"""
@ -107,51 +104,6 @@ options:
"""
ocrl_doc = """
Lattice, but for images.
usage:
camelot ocrl [-t <tarea>...] [-m <mtol>...] [options] [--] <file>
options:
-t, --tarea <tarea> Specific table areas to analyze.
-m, --mtol <mtol> Tolerance to account for when merging lines
which are very close. [default: 2]
-b, --blocksize <blocksize> See adaptive threshold doc. [default: 15]
-C, --constant <constant> See adaptive threshold doc. [default: -2]
-D, --dpi <dpi> Dots per inch, specify image quality to be used for OCR.
[default: 300]
-g, --layout <layout> Tesseract page segmentation mode. [default: 7]
-l, --lang <lang> Specify language to be used for OCR. [default: eng]
-s, --scale <scale> Scaling factor. Large scaling factor leads to
smaller lines being detected. [default: 15]
-I, --iterations <iterations> Number of iterations for dilation. [default: 0]
-d, --debug <debug> Debug by visualizing pdf geometry.
(contour,line,joint,table) Example: -d table
"""
ocrs_doc = """
Stream, but for images.
usage:
camelot ocrs [-t <tarea>...] [-c <columns>...] [options] [--] <file>
options:
-t, --tarea <tarea> Specific table areas to analyze.
-c, --columns <columns> Comma-separated list of column x-coordinates.
Example: -c 10.1,20.2,30.3
-b, --blocksize <blocksize> See adaptive threshold doc. [default: 15]
-C, --constant <constant> See adaptive threshold doc. [default: -2]
-D, --dpi <dpi> Dots per inch, specify image quality to be used for OCR.
[default: 300]
-g, --layout <layout> Tesseract page segmentation mode. [default: 7]
-l, --lang <lang> Specify language to be used for OCR. [default: eng]
-G, --line-scale <line_scale> Line scaling factor. [default: 15]
-S, --char-scale <char_scale> Char scaling factor. [default: 200]
-d, --debug Debug by visualizing image.
"""
def plot_table_barchart(r, c, p, pno, tno):
row_idx = [i + 1 for i, row in enumerate(r)]
col_idx = [i + 1 for i, col in enumerate(c)]
@ -376,10 +328,6 @@ if __name__ == '__main__':
args.update(docopt(lattice_doc, argv=argv))
elif args['<method>'] == 'stream':
args.update(docopt(stream_doc, argv=argv))
elif args['<method>'] == 'ocrl':
args.update(docopt(ocrl_doc, argv=argv))
elif args['<method>'] == 'ocrs':
args.update(docopt(ocrs_doc, argv=argv))
filename = args['<file>']
filedir = os.path.dirname(args['<file>'])
@ -551,140 +499,6 @@ if __name__ == '__main__':
except Exception as e:
logger.exception(e.message, exc_info=True)
sys.exit()
elif args['<method>'] == 'ocrl':
try:
kwargs = {
'table_area': args['--tarea'] if args['--tarea'] else None,
'mtol': [int(m) for m in args['--mtol']],
'blocksize': int(args['--blocksize']),
'threshold_constant': float(args['--constant']),
'dpi': int(args['--dpi']),
'layout': int(args['--layout']),
'lang': args['--lang'],
'scale': int(args['--scale']),
'iterations': int(args['--iterations']),
'debug': args['--debug']
}
manager = Pdf(OCRLattice(**kwargs), filename, pagenos=p, clean=True,
parallel=args['--parallel'])
data = manager.extract()
processing_time = time.time() - start_time
logger.info("Finished processing in " + str(processing_time) + " seconds")
if args['--plot']:
if args['--output']:
pngname = os.path.join(args['--output'], os.path.basename(pngname))
plot_type = args['--plot'].split(',')
if 'page' in plot_type:
for page_number in sorted(data.keys(), key=lambda x: int(x[5:])):
page = data[page_number]
for table_number in sorted(page.keys(), key=lambda x: int(x[6:])):
table = page[table_number]
plot_table_barchart(table['r_nempty_cells'],
table['c_nempty_cells'],
table['empty_p'],
page_number,
table_number)
if 'all' in plot_type:
plot_all_barchart(data, pngname)
if 'rc' in plot_type:
plot_rc_piechart(data, pngname)
if args['--print-stats']:
print_stats(data, processing_time)
if args['--save-stats']:
if args['--output']:
scorename = os.path.join(args['--output'], os.path.basename(scorename))
with open(scorename, 'w') as score_file:
score_file.write('table,nrows,ncols,empty_p,line_p,text_p,score\n')
for page_number in sorted(data.keys(), key=lambda x: int(x[5:])):
page = data[page_number]
for table_number in sorted(page.keys(), key=lambda x: int(x[6:])):
table = page[table_number]
score_file.write('{0},{1},{2},{3},{4},{5},{6}\n'.format(
''.join([page_number, '_', table_number]),
table['nrows'],
table['ncols'],
table['empty_p'],
table['line_p'],
table['text_p'],
table['score']))
if args['--debug']:
manager.debug_plot()
except Exception as e:
logger.exception(e.message, exc_info=True)
sys.exit()
elif args['<method>'] == 'ocrs':
try:
kwargs = {
'table_area': args['--tarea'] if args['--tarea'] else None,
'columns': args['--columns'] if args['--columns'] else None,
'blocksize': int(args['--blocksize']),
'threshold_constant': float(args['--constant']),
'dpi': int(args['--dpi']),
'layout': int(args['--layout']),
'lang': args['--lang'],
'line_scale': int(args['--line-scale']),
'char_scale': int(args['--char-scale']),
'debug': args['--debug']
}
manager = Pdf(OCRStream(**kwargs), filename, pagenos=p, clean=True,
parallel=args['--parallel'])
data = manager.extract()
processing_time = time.time() - start_time
logger.info("Finished processing in " + str(processing_time) + " seconds")
if args['--plot']:
if args['--output']:
pngname = os.path.join(args['--output'], os.path.basename(pngname))
plot_type = args['--plot'].split(',')
if 'page' in plot_type:
for page_number in sorted(data.keys(), key=lambda x: int(x[5:])):
page = data[page_number]
for table_number in sorted(page.keys(), key=lambda x: int(x[6:])):
table = page[table_number]
plot_table_barchart(table['r_nempty_cells'],
table['c_nempty_cells'],
table['empty_p'],
page_number,
table_number)
if 'all' in plot_type:
plot_all_barchart(data, pngname)
if 'rc' in plot_type:
plot_rc_piechart(data, pngname)
if args['--print-stats']:
print_stats(data, processing_time)
if args['--save-stats']:
if args['--output']:
scorename = os.path.join(args['--output'], os.path.basename(scorename))
with open(scorename, 'w') as score_file:
score_file.write('table,nrows,ncols,empty_p,line_p,text_p,score\n')
for page_number in sorted(data.keys(), key=lambda x: int(x[5:])):
page = data[page_number]
for table_number in sorted(page.keys(), key=lambda x: int(x[6:])):
table = page[table_number]
score_file.write('{0},{1},{2},{3},{4},{5},{6}\n'.format(
''.join([page_number, '_', table_number]),
table['nrows'],
table['ncols'],
table['empty_p'],
table['line_p'],
table['text_p'],
table['score']))
if args['--debug']:
manager.debug_plot()
except Exception as e:
logger.exception(e.message, exc_info=True)
sys.exit()
if args.get('--debug') is not None and args['--debug']:
print("See 'camelot <method> -h' for various parameters you can tweak.")