Add OCR support for image based pdfs with lines

* Cosmits

* Remove unnecessary kwargs

* Direct ghostscript call output to /dev/null

* Change char_margin's default value

* Add image attribute in Table and Cell

* Add OCR

* Fix coordinates

* Add table_area

* Add ocr options to cli

* Direct ghostscript call output to /dev/null

* Add ocr dostring

* Add requirements

* Update README
pull/2/head
Vinayak Mehta 2017-01-07 16:37:56 +05:30 committed by GitHub
parent 70f626373b
commit 970256e19d
8 changed files with 246 additions and 3 deletions

View File

@ -57,6 +57,10 @@ Currently, camelot works under Python 2.7.
The required dependencies include [numpy](http://www.numpy.org/), [OpenCV](http://opencv.org/) and [ImageMagick](http://www.imagemagick.org/script/index.php).
### Optional
You'll need to install [Tesseract](https://github.com/tesseract-ocr/tesseract) if you want to extract tables from image based pdfs. Also, you'll need a tesseract language pack if your pdf isn't in english.
## Installation
Make sure you have the most updated versions for `pip` and `setuptools`. You can update them by

View File

@ -1,3 +1,3 @@
__version__ = '1.0.0'
__all__ = ['pdf', 'lattice', 'stream']
__all__ = ['pdf', 'lattice', 'stream', 'ocr']

View File

@ -79,6 +79,7 @@ class Cell:
self.text = ''
self.spanning_h = False
self.spanning_v = False
self.image = None
def add_text(self, text):
"""Adds text to cell.

148
camelot/ocr.py 100644
View File

@ -0,0 +1,148 @@
import os
import subprocess
import pyocr
from PIL import Image
from .table import Table
from .imgproc import (adaptive_threshold, find_lines, find_table_contours,
find_table_joints)
from .utils import merge_close_values, encode_list
class OCR:
"""Uses optical character recognition to get text out of image based pdfs.
Currently works only on pdfs with lines.
Parameters
----------
table_area : list
List of strings of the form x1,y1,x2,y2 where
(x1, y1) -> left-top and (x2, y2) -> right-bottom in PDFMiner's
coordinate space, denoting table areas to analyze.
(optional, default: None)
mtol : list
List of ints specifying m-tolerance parameters.
(optional, default: [2])
dpi : int
Dots per inch.
(optional, default: 300)
lang : string
Language to be used for OCR.
(optional, default: 'eng')
scale : int
Used to divide the height/width of a pdf to get a structuring
element for image processing.
(optional, default: 15)
debug : string
{'contour', 'line', 'joint', 'table'}
Set to one of the above values to generate a matplotlib plot
of detected contours, lines, joints and the table generated.
(optional, default: None)
"""
def __init__(self, table_area=None, mtol=[2], dpi=300, lang="eng", scale=15,
debug=None):
self.method = 'ocr'
self.table_area = table_area
self.mtol = mtol
self.tool = pyocr.get_available_tools()[0] # fix this
self.dpi = dpi
self.lang = lang
self.scale = scale
self.debug = debug
def get_tables(self, pdfname):
if self.tool is None:
return None
bname, __ = os.path.splitext(pdfname)
imagename = ''.join([bname, '.png'])
gs_call = [
"-q", "-sDEVICE=png16m", "-o", imagename, "-r{0}".format(self.dpi),
pdfname
]
if "ghostscript" in subprocess.check_output(["gs", "-version"]).lower():
gs_call.insert(0, "gs")
else:
gs_call.insert(0, "gsc")
subprocess.call(gs_call, stdout=open(os.devnull, 'w'),
stderr=subprocess.STDOUT)
img, threshold = adaptive_threshold(imagename)
vmask, v_segments = find_lines(threshold, direction='vertical',
scale=self.scale)
hmask, h_segments = find_lines(threshold, direction='horizontal',
scale=self.scale)
if self.table_area is not None:
areas = []
for area in self.table_area:
x1, y1, x2, y2 = area.split(",")
x1 = int(x1)
y1 = int(y1)
x2 = int(x2)
y2 = int(y2)
areas.append((x1, y1, abs(x2 - x1), abs(y2 - y1)))
table_bbox = find_table_joints(areas, vmask, hmask)
else:
contours = find_table_contours(vmask, hmask)
table_bbox = find_table_joints(contours, vmask, hmask)
if self.debug:
self.debug_images = (img, table_bbox)
self.debug_segments = (v_segments, h_segments)
self.debug_tables = []
if len(self.mtol) == 1 and self.mtol[0] == 2:
self.mtol = self.mtol * len(table_bbox)
page = {}
tables = {}
table_no = 0
for k in sorted(table_bbox.keys(), key=lambda x: x[1]):
table_data = {}
cols, rows = zip(*table_bbox[k])
cols, rows = list(cols), list(rows)
cols.extend([k[0], k[2]])
rows.extend([k[1], k[3]])
cols = merge_close_values(sorted(cols), mtol=self.mtol[table_no])
rows = merge_close_values(sorted(rows, reverse=True), mtol=self.mtol[table_no])
cols = [(cols[i], cols[i + 1])
for i in range(0, len(cols) - 1)]
rows = [(rows[i], rows[i + 1])
for i in range(0, len(rows) - 1)]
table = Table(cols, rows)
if self.debug:
self.debug_tables.append(table)
table.image = img[k[3]:k[1],k[0]:k[2]]
for i in range(len(table.cells)):
for j in range(len(table.cells[i])):
x1 = int(table.cells[i][j].x1)
y1 = int(table.cells[i][j].y1)
x2 = int(table.cells[i][j].x2)
y2 = int(table.cells[i][j].y2)
table.cells[i][j].image = img[y1:y2,x1:x2]
text = self.tool.image_to_string(
Image.fromarray(table.cells[i][j].image),
lang=self.lang,
builder=pyocr.builders.TextBuilder()
)
table.cells[i][j].add_text(text)
ar = table.get_list()
ar.reverse()
ar = encode_list(ar)
table_data['data'] = ar
tables['table-{0}'.format(table_no + 1)] = table_data
table_no += 1
page[os.path.basename(bname)] = tables
if self.debug:
return None
return page

View File

@ -126,7 +126,7 @@ class Pdf:
if self.extractor.method == 'stream':
self.debug = self.extractor.debug
self.debug_text = []
elif self.extractor.method == 'lattice':
elif self.extractor.method in ['lattice', 'ocr']:
self.debug = self.extractor.debug
self.debug_images = []
self.debug_segments = []
@ -138,7 +138,7 @@ class Pdf:
if self.extractor.debug:
if self.extractor.method == 'stream':
self.debug_text.append(self.extractor.debug_text)
elif self.extractor.method == 'lattice':
elif self.extractor.method in ['lattice', 'ocr']:
self.debug_images.append(self.extractor.debug_images)
self.debug_segments.append(self.extractor.debug_segments)
self.debug_tables.append(self.extractor.debug_tables)

View File

@ -34,6 +34,7 @@ class Table:
self.cells = [[Cell(c[0], r[1], c[1], r[0])
for c in cols] for r in rows]
self.nocont_ = 0
self.image = None
def set_all_edges(self):
"""Sets all table edges to True.

View File

@ -3,5 +3,7 @@ matplotlib
nose
pdfminer
pyexcel-xlsx
Pillow
pyocr
PyPDF2
Sphinx

View File

@ -17,6 +17,7 @@ from PyPDF2 import PdfFileReader
from camelot.pdf import Pdf
from camelot.lattice import Lattice
from camelot.stream import Stream
from camelot.ocr import OCR
doc = """
@ -52,6 +53,7 @@ options:
camelot methods:
lattice Looks for lines between data.
stream Looks for spaces between data.
ocr Looks for lines in image based pdfs.
See 'camelot <method> -h' for more information on a specific method.
"""
@ -101,6 +103,26 @@ options:
"""
ocr_doc = """
OCR method looks for lines in image based pdfs.
usage:
camelot ocr [-t <tarea>] [-m <mtol>] [options] [--] <file>
options:
-t, --tarea <tarea> Specific table areas to analyze.
-m, --mtol <mtol> Tolerance to account for when merging lines
which are very close. [default: 2]
-D, --dpi <dpi> Dots per inch, specify image quality to be used for OCR.
[default: 300]
-l, --lang <lang> Specify language to be used for OCR. [default: eng]
-s, --scale <scale> Scaling factor. Large scaling factor leads to
smaller lines being detected. [default: 15]
-d, --debug <debug> Debug by visualizing pdf geometry.
(contour,line,joint,table) Example: -d table
"""
def plot_table_barchart(r, c, p, pno, tno):
row_idx = [i + 1 for i, row in enumerate(r)]
col_idx = [i + 1 for i, col in enumerate(c)]
@ -315,6 +337,8 @@ if __name__ == '__main__':
args.update(docopt(lattice_doc, argv=argv))
elif args['<method>'] == 'stream':
args.update(docopt(stream_doc, argv=argv))
elif args['<method>'] == 'ocr':
args.update(docopt(ocr_doc, argv=argv))
vprint = print if args['--verbose'] else lambda *a, **k: None
filename = args['<file>']
@ -487,6 +511,69 @@ if __name__ == '__main__':
except Exception as e:
logging.exception(e.message, exc_info=True)
sys.exit()
elif args['<method>'] == 'ocr':
try:
tarea = args['--tarea'] if args['--tarea'] else None
mtol = [int(m) for m in args['--mtol']]
manager = Pdf(OCR(table_area=tarea, mtol=mtol, dpi=int(args['--dpi']),
lang=args['--lang'], scale=int(args['--scale']),
debug=args['--debug']),
filename,
pagenos=p,
parallel=args['--parallel'],
clean=True)
data = manager.extract()
processing_time = time.time() - start_time
vprint("Finished processing in", processing_time, "seconds")
logging.info("Finished processing in " + str(processing_time) + " seconds")
if args['--plot']:
if args['--output']:
pngname = os.path.join(args['--output'], os.path.basename(pngname))
plot_type = args['--plot'].split(',')
if 'page' in plot_type:
for page_number in sorted(data.keys(), key=lambda x: int(x[5:])):
page = data[page_number]
for table_number in sorted(page.keys(), key=lambda x: int(x[6:])):
table = page[table_number]
plot_table_barchart(table['r_nempty_cells'],
table['c_nempty_cells'],
table['empty_p'],
page_number,
table_number)
if 'all' in plot_type:
plot_all_barchart(data, pngname)
if 'rc' in plot_type:
plot_rc_piechart(data, pngname)
if args['--print-stats']:
print_stats(data, processing_time)
if args['--save-stats']:
if args['--output']:
scorename = os.path.join(args['--output'], os.path.basename(scorename))
with open(scorename, 'w') as score_file:
score_file.write('table,nrows,ncols,empty_p,line_p,text_p,score\n')
for page_number in sorted(data.keys(), key=lambda x: int(x[5:])):
page = data[page_number]
for table_number in sorted(page.keys(), key=lambda x: int(x[6:])):
table = page[table_number]
score_file.write('{0},{1},{2},{3},{4},{5},{6}\n'.format(
''.join([page_number, '_', table_number]),
table['nrows'],
table['ncols'],
table['empty_p'],
table['line_p'],
table['text_p'],
table['score']))
if args['--debug']:
manager.debug_plot()
except Exception as e:
logging.exception(e.message, exc_info=True)
sys.exit()
if args['--debug']:
print("See 'camelot <method> -h' for various parameters you can tweak.")