Improve grid detection and add more options
parent
47da8606a6
commit
f6869a9af4
|
|
@ -0,0 +1,3 @@
|
|||
__pycache__/
|
||||
*.py[cod]
|
||||
.camelot/
|
||||
|
|
@ -12,14 +12,17 @@ optional arguments:
|
|||
-h, --help show this help message and exit
|
||||
|
||||
-p PAGES [PAGES ...] Specify the page numbers and/or page ranges to be
|
||||
parsed. Example: -p="1 3-5 9". (default: -p="1")
|
||||
parsed. Example: -p="1 3-5 9", -p="all" (default:
|
||||
-p="1")
|
||||
|
||||
-f FORMAT Output format (csv/xlsx). Example: -f="xlsx" (default:
|
||||
-f="csv")
|
||||
|
||||
-spreadsheet Extract data stored in pdfs with ruling lines.
|
||||
(default: False)
|
||||
|
||||
-guess [Experimental] Guess the values in empty cells.
|
||||
-F ORIENTATION Fill the values in empty cells. Example: -F="h",
|
||||
-F="v", -F="hv" (default: None)
|
||||
|
||||
-s [SCALE] Scaling factor. Large scaling factor leads to smaller
|
||||
lines being detected. (default: 15)
|
||||
|
|
|
|||
65
camelot.py
65
camelot.py
|
|
@ -1,7 +1,9 @@
|
|||
import os
|
||||
import re
|
||||
import glob
|
||||
import time
|
||||
import shutil
|
||||
import logging
|
||||
import subprocess
|
||||
import argparse
|
||||
|
||||
|
|
@ -16,62 +18,64 @@ def mkdir(directory):
|
|||
|
||||
def filesort(filename):
|
||||
filename = filename.split('/')[-1]
|
||||
return int(pno.findall(filename)[0])
|
||||
num = pno.findall(filename)
|
||||
if len(num) == 2:
|
||||
return (int(num[0]), int(num[1]))
|
||||
else:
|
||||
return (int(num[0]), 0)
|
||||
|
||||
start_time = time.time()
|
||||
CAMELOT_DIR = '.camelot/'
|
||||
mkdir(CAMELOT_DIR)
|
||||
|
||||
parser = argparse.ArgumentParser(description='Parse yo pdf!', usage='python2 camelot.py [options] pdf_file')
|
||||
parser.add_argument('-p', nargs='+', action='store', dest='pages', help='Specify the page numbers and/or page ranges to be parsed. Example: -p="1 3-5 9". (default: -p="1")')
|
||||
parser.add_argument('-f', nargs=1, action='store', dest='format', help='Output format (csv/xlsx). Example: -f="xlsx" (default: -f="csv")')
|
||||
parser.add_argument('-spreadsheet', action='store_true', dest='spreadsheet', help='Extract data stored in pdfs with ruling lines.')
|
||||
parser.add_argument('-guess', action='store_true', dest='guess', help='[Experimental] Guess the values in empty cells.')
|
||||
parser.add_argument('-p', nargs='+', action='store', dest='pages', help='Specify the page numbers and/or page ranges to be parsed. Example: -p="1 3-5 9", -p="all" (default: -p="1")')
|
||||
parser.add_argument('-f', nargs=1, action='store', dest='format', help='Output format (csv/xlsx). Example: -f="xlsx" (default: -f="csv")', default=["csv"])
|
||||
parser.add_argument('-spreadsheet', action='store_true', dest='spreadsheet', help='Extract data stored in pdfs with ruling lines. (default: False)')
|
||||
parser.add_argument('-F', action='store', dest='orientation', help='Fill the values in empty cells. Example: -F="h", -F="v", -F="hv" (default: None)', default=None)
|
||||
parser.add_argument('-s', nargs='?', action='store', dest='scale', help='Scaling factor. Large scaling factor leads to smaller lines being detected. (default: 15)', default=15, type=int)
|
||||
parser.add_argument('file', nargs=1)
|
||||
|
||||
result = parser.parse_args()
|
||||
|
||||
if result.pages:
|
||||
p = []
|
||||
for r in result.pages[0].split(' '):
|
||||
if '-' in r:
|
||||
a, b = r.split('-')
|
||||
a, b = int(a), int(b)
|
||||
p.extend([str(i) for i in range(a, b + 1)])
|
||||
else:
|
||||
p.extend([str(r)])
|
||||
if result.pages == ['all']:
|
||||
p = result.pages
|
||||
else:
|
||||
p = []
|
||||
for r in result.pages[0].split(' '):
|
||||
if '-' in r:
|
||||
a, b = r.split('-')
|
||||
a, b = int(a), int(b)
|
||||
p.extend([str(i) for i in range(a, b + 1)])
|
||||
else:
|
||||
p.extend([str(r)])
|
||||
else:
|
||||
p = ['1']
|
||||
p = sorted(set(p))
|
||||
|
||||
if result.format:
|
||||
f = result.format
|
||||
else:
|
||||
f = ['csv']
|
||||
|
||||
if result.spreadsheet:
|
||||
s = True
|
||||
else:
|
||||
s = False
|
||||
s = result.spreadsheet
|
||||
|
||||
pdf_dir = os.path.join(CAMELOT_DIR, os.urandom(16).encode('hex'))
|
||||
mkdir(pdf_dir)
|
||||
filename = result.file[0].split('/')[-1]
|
||||
logging.basicConfig(filename=os.path.join(pdf_dir, filename.split('.')[0] + '.log'), filemode='w', level=logging.DEBUG)
|
||||
|
||||
shutil.copy(result.file[0], os.path.join(pdf_dir, filename))
|
||||
print "separating pdf into pages"
|
||||
print
|
||||
for page in p:
|
||||
subprocess.call(['pdfseparate', '-f', page, '-l', page, os.path.join(pdf_dir, filename), os.path.join(pdf_dir, 'pg-' + page + '.pdf')])
|
||||
if p == ['all']:
|
||||
subprocess.call(['pdfseparate', os.path.join(pdf_dir, filename), os.path.join(pdf_dir, 'pg-%d.pdf')])
|
||||
else:
|
||||
for page in p:
|
||||
subprocess.call(['pdfseparate', '-f', page, '-l', page, os.path.join(pdf_dir, filename), os.path.join(pdf_dir, 'pg-' + page + '.pdf')])
|
||||
|
||||
if s:
|
||||
print "using the spreadsheet method"
|
||||
for g in sorted(glob.glob(os.path.join(pdf_dir, 'pg-*.pdf'))):
|
||||
print "converting", g.split('/')[-1], "to image"
|
||||
os.system(' '.join(['convert', '-density', '300', g, '-depth', '8', g[:-4] + '.png']))
|
||||
try:
|
||||
spreadsheet(pdf_dir, g.split('/')[-1], result.guess, result.scale)
|
||||
except:
|
||||
pass
|
||||
spreadsheet(pdf_dir, g.split('/')[-1], result.orientation, result.scale)
|
||||
else:
|
||||
print "using the basic method"
|
||||
for g in sorted(glob.glob(os.path.join(pdf_dir, 'pg-*.pdf'))):
|
||||
|
|
@ -91,4 +95,7 @@ if result.format == ['xlsx']:
|
|||
xlsxpath = os.path.join(pdf_dir, xlsxname)
|
||||
save_data(xlsxpath, data)
|
||||
print
|
||||
print "saved as", xlsxname
|
||||
print "saved as", xlsxname
|
||||
|
||||
print "finished in", time.time() - start_time, "seconds"
|
||||
logging.info("Time taken for " + filename + ": " + str(time.time() - start_time) + " seconds")
|
||||
|
|
|
|||
|
|
@ -1,20 +1,6 @@
|
|||
import cv2
|
||||
import sys
|
||||
import subprocess
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib.patches as patches
|
||||
import numpy as np
|
||||
|
||||
from pdfminer.pdfparser import PDFParser
|
||||
from pdfminer.pdfdocument import PDFDocument
|
||||
from pdfminer.pdfpage import PDFPage
|
||||
from pdfminer.pdfpage import PDFTextExtractionNotAllowed
|
||||
from pdfminer.pdfinterp import PDFResourceManager
|
||||
from pdfminer.pdfinterp import PDFPageInterpreter
|
||||
from pdfminer.pdfdevice import PDFDevice
|
||||
from pdfminer.converter import PDFPageAggregator
|
||||
from pdfminer.layout import LAParams, LTChar
|
||||
|
||||
def transform(x, y, img_x, img_y, pdf_x, pdf_y):
|
||||
x *= pdf_x / float(img_x)
|
||||
y = abs(y - img_y)
|
||||
|
|
@ -27,9 +13,10 @@ def morph(imagename, p_x, p_y, s):
|
|||
img_x, img_y = img.shape[1], img.shape[0]
|
||||
pdf_x, pdf_y = p_x, p_y
|
||||
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
||||
th1 = cv2.adaptiveThreshold(np.invert(gray), 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 15, -2)
|
||||
vertical = th1
|
||||
horizontal = th1
|
||||
# empirical result taken from http://pequan.lip6.fr/~bereziat/pima/2012/seuillage/sezgin04.pdf
|
||||
threshold = cv2.adaptiveThreshold(np.invert(gray), 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 15, -0.2)
|
||||
vertical = threshold
|
||||
horizontal = threshold
|
||||
|
||||
scale = s
|
||||
verticalsize = vertical.shape[0] / scale
|
||||
|
|
@ -51,15 +38,22 @@ def morph(imagename, p_x, p_y, s):
|
|||
|
||||
tables = {}
|
||||
for c in contours:
|
||||
x, y, w, h = cv2.boundingRect(c)
|
||||
jmask = joints[y:y+h, x:x+w]
|
||||
_, jc, _ = cv2.findContours(jmask, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_SIMPLE)
|
||||
|
||||
c_poly = cv2.approxPolyDP(c, 3, True)
|
||||
x, y, w, h = cv2.boundingRect(c_poly)
|
||||
# find number of non-zero values in joints using what boundingRect returns
|
||||
roi = joints[y:y+h, x:x+w]
|
||||
_, jc, _ = cv2.findContours(roi, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_SIMPLE)
|
||||
if len(jc) <= 4: # remove contours with less than <=4 joints
|
||||
continue
|
||||
joint_coords = []
|
||||
for j in jc:
|
||||
jx, jy, jw, jh = cv2.boundingRect(j)
|
||||
c1, c2 = x + (2*jx + jw) / 2, y + (2*jy + jh) / 2
|
||||
c1, c2 = transform(c1, c2, img_x, img_y, pdf_x, pdf_y)
|
||||
joint_coords.append((c1, c2))
|
||||
x1, y1 = transform(x, y, img_x, img_y, pdf_x, pdf_y)
|
||||
x2, y2 = transform(x + w, y + h, img_x, img_y, pdf_x, pdf_y)
|
||||
tables[(x1, y2)] = (x2, y1)
|
||||
tables[(x1, y2, x2, y1)] = joint_coords
|
||||
|
||||
v_segments, h_segments = [], []
|
||||
_, vcontours, _ = cv2.findContours(vertical, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
||||
|
|
|
|||
|
|
@ -15,12 +15,26 @@ def remove_close_values(ar):
|
|||
ret.append(a)
|
||||
else:
|
||||
temp = ret[-1]
|
||||
if np.isclose(temp, a, atol=1):
|
||||
if np.isclose(temp, a, atol=2):
|
||||
pass
|
||||
else:
|
||||
ret.append(a)
|
||||
return ret
|
||||
|
||||
def merge_close_values(ar):
|
||||
ret = []
|
||||
for a in ar:
|
||||
if not ret:
|
||||
ret.append(a)
|
||||
else:
|
||||
temp = ret[-1]
|
||||
if np.isclose(temp, a, atol=2):
|
||||
temp = (temp + a) / 2.0
|
||||
ret[-1] = temp
|
||||
else:
|
||||
ret.append(a)
|
||||
return ret
|
||||
|
||||
def get_row_idx(t, rows):
|
||||
for r in range(len(rows)):
|
||||
if abs(t.y0 + t.y1) / 2.0 < rows[r][0] and abs(t.y0 + t.y1) / 2.0 > rows[r][1]:
|
||||
|
|
@ -40,34 +54,46 @@ def reduce_index(t, r_idx, c_idx):
|
|||
r_idx -= 1
|
||||
return r_idx, c_idx
|
||||
|
||||
def fill(t):
|
||||
for i in range(len(t.cells)):
|
||||
for j in range(len(t.cells[i])):
|
||||
if t.cells[i][j].get_text().strip() == '':
|
||||
if t.cells[i][j].spanning_h:
|
||||
t.cells[i][j].add_text(t.cells[i][j - 1].get_text())
|
||||
elif t.cells[i][j].spanning_v:
|
||||
t.cells[i][j].add_text(t.cells[i - 1][j].get_text())
|
||||
def fill(t, orientation):
|
||||
if orientation == "h":
|
||||
for i in range(len(t.cells)):
|
||||
for j in range(len(t.cells[i])):
|
||||
if t.cells[i][j].get_text().strip() == '':
|
||||
if t.cells[i][j].spanning_h:
|
||||
t.cells[i][j].add_text(t.cells[i][j - 1].get_text())
|
||||
elif orientation == "v":
|
||||
for i in range(len(t.cells)):
|
||||
for j in range(len(t.cells[i])):
|
||||
if t.cells[i][j].get_text().strip() == '':
|
||||
if t.cells[i][j].spanning_v:
|
||||
t.cells[i][j].add_text(t.cells[i - 1][j].get_text())
|
||||
elif orientation == "hv":
|
||||
for i in range(len(t.cells)):
|
||||
for j in range(len(t.cells[i])):
|
||||
if t.cells[i][j].get_text().strip() == '':
|
||||
if t.cells[i][j].spanning_h:
|
||||
t.cells[i][j].add_text(t.cells[i][j - 1].get_text())
|
||||
elif t.cells[i][j].spanning_v:
|
||||
t.cells[i][j].add_text(t.cells[i - 1][j].get_text())
|
||||
return t
|
||||
|
||||
def spreadsheet(pdf_dir, filename, guess, scale):
|
||||
def spreadsheet(pdf_dir, filename, orientation, scale):
|
||||
print "working on", filename
|
||||
imagename = os.path.join(pdf_dir, filename.split('.')[0] + '.png')
|
||||
text, pdf_x, pdf_y = get_pdf_info(os.path.join(pdf_dir, filename), 'spreadsheet')
|
||||
tables, v_segments, h_segments = morph(imagename, pdf_x, pdf_y, scale)
|
||||
|
||||
num_tables = 0
|
||||
for k in sorted(tables.keys(), reverse=True):
|
||||
for k in sorted(tables.keys(), key=lambda x: x[1], reverse=True): # sort tables based on y-coord
|
||||
# find rows and columns that lie in table
|
||||
lb = k
|
||||
rt = tables[k]
|
||||
lb = (k[0], k[1])
|
||||
rt = (k[2], k[3])
|
||||
v_s = [v for v in v_segments if v[1] > lb[1] - 2 and v[3] < rt[1] + 2 and lb[0] - 2 <= v[0] <= rt[0] + 2]
|
||||
h_s = [h for h in h_segments if h[0] > lb[0] - 2 and h[2] < rt[0] + 2 and lb[1] - 2 <= h[1] <= rt[1] + 2]
|
||||
columns = [v[0] for v in v_s]
|
||||
rows = [h[1] for h in h_s]
|
||||
columns, rows = zip(*tables[k])
|
||||
# sort horizontal and vertical segments
|
||||
columns = remove_close_values(sorted(columns))
|
||||
rows = remove_close_values(sorted(rows, reverse=True))
|
||||
columns = merge_close_values(sorted(list(columns)))
|
||||
rows = merge_close_values(sorted(list(rows), reverse=True))
|
||||
# make grid using x and y coord of shortlisted rows and columns
|
||||
columns = [(columns[i], columns[i + 1]) for i in range(0, len(columns) - 1)]
|
||||
rows = [(rows[i], rows[i + 1]) for i in range(0, len(rows) - 1)]
|
||||
|
|
@ -89,8 +115,8 @@ def spreadsheet(pdf_dir, filename, guess, scale):
|
|||
r_idx, c_idx = reduce_index(table, r_idx, c_idx)
|
||||
table.cells[r_idx][c_idx].add_text(t.get_text().strip('\n'))
|
||||
|
||||
if guess:
|
||||
table = fill(table)
|
||||
if orientation:
|
||||
table = fill(table, orientation)
|
||||
|
||||
csvname = filename.split('.')[0] + ('_table_%d' % (num_tables + 1)) + '.csv'
|
||||
csvpath = os.path.join(pdf_dir, csvname)
|
||||
|
|
|
|||
8
table.py
8
table.py
|
|
@ -11,9 +11,11 @@ class Table:
|
|||
for v in vertical:
|
||||
# find closest x coord
|
||||
# iterate over y coords and find closest points
|
||||
i = [i for i, t in enumerate(self.columns) if np.isclose(v[0], t[0])]
|
||||
i = [i for i, t in enumerate(self.columns) if np.isclose(v[0], t[0], atol=2)]
|
||||
j = [j for j, t in enumerate(self.rows) if np.isclose(v[3], t[0], atol=2)]
|
||||
k = [k for k, t in enumerate(self.rows) if np.isclose(v[1], t[0], atol=2)]
|
||||
if not j:
|
||||
continue
|
||||
if i == [0]: # only left edge
|
||||
if k:
|
||||
I = i[0]
|
||||
|
|
@ -65,9 +67,11 @@ class Table:
|
|||
for h in horizontal:
|
||||
# find closest y coord
|
||||
# iterate over x coords and find closest points
|
||||
i = [i for i, t in enumerate(self.rows) if np.isclose(h[1], t[0])]
|
||||
i = [i for i, t in enumerate(self.rows) if np.isclose(h[1], t[0], atol=2)]
|
||||
j = [j for j, t in enumerate(self.columns) if np.isclose(h[0], t[0], atol=2)]
|
||||
k = [k for k, t in enumerate(self.columns) if np.isclose(h[2], t[0], atol=2)]
|
||||
if not j:
|
||||
continue
|
||||
if i == [0]: # only top edge
|
||||
if k:
|
||||
I = i[0]
|
||||
|
|
|
|||
Loading…
Reference in New Issue