camelot-py/camelot/parsers/base.py

483 lines
15 KiB
Python

# -*- coding: utf-8 -*-
import os
import warnings
import numpy as np
import pandas as pd
from ..utils import (
bbox_from_str,
compute_accuracy,
compute_whitespace,
get_text_objects,
get_table_index,
text_in_bbox,
)
from ..core import Table
class BaseParser():
"""Defines a base parser.
"""
def __init__(
self,
parser_id,
table_regions=None,
table_areas=None,
copy_text=None,
split_text=False,
strip_text="",
shift_text=None,
flag_size=False,
debug=False):
self.id = parser_id
self.table_regions = table_regions
self.table_areas = table_areas
self.table_bbox_parses = {}
self.columns = None
self.copy_text = copy_text
self.split_text = split_text
self.strip_text = strip_text
self.shift_text = shift_text
self.flag_size = flag_size
self.rootname = None
self.t_bbox = None
# For plotting details of parsing algorithms
self.resolution = 300 # default plotting resolution of the PDF.
self.parse_details = {}
if not debug:
self.parse_details = None
def table_bboxes(self):
return sorted(
self.table_bbox_parses.keys(),
key=lambda x: x[1],
reverse=True
)
def prepare_page_parse(self, filename, layout, dimensions,
page_idx, layout_kwargs):
self.filename = filename
self.layout_kwargs = layout_kwargs
self.layout = layout
self.dimensions = dimensions
self.page = page_idx
self.images = get_text_objects(self.layout, ltype="image")
self.horizontal_text = get_text_objects(
self.layout,
ltype="horizontal_text"
)
self.vertical_text = get_text_objects(
self.layout,
ltype="vertical_text"
)
self.pdf_width, self.pdf_height = self.dimensions
self.rootname, __ = os.path.splitext(self.filename)
if self.parse_details is not None:
self.parse_details["table_regions"] = self.table_regions
self.parse_details["table_areas"] = self.table_areas
def _apply_regions_filter(self, textlines):
"""If regions have been specified, filter textlines to these regions.
Parameters
----------
textlines : list
list of textlines to be filtered
Returns
-------
filtered_textlines : list of textlines within the regions specified
"""
filtered_textlines = []
if self.table_regions is None:
filtered_textlines.extend(textlines)
else:
for region_str in self.table_regions:
region_text = text_in_bbox(
bbox_from_str(region_str),
textlines
)
filtered_textlines.extend(region_text)
return filtered_textlines
def _document_has_no_text(self):
"""Detects image only documents and warns.
Returns
-------
has_no_text : bool
Whether the document doesn't have any text at all.
"""
if not self.horizontal_text:
rootname = os.path.basename(self.rootname)
if self.images:
warnings.warn(
"{rootname} is image-based, "
"camelot only works on text-based pages."
.format(rootname=rootname)
)
else:
warnings.warn(
"No tables found on {rootname}".format(rootname=rootname)
)
return True
return False
def _initialize_new_table(self, table_idx, cols, rows):
"""Initialize new table object, ready to be populated
Parameters
----------
table_idx : int
Index of this table within the pdf page analyzed
cols : list
list of coordinate boundaries tuples (left, right)
rows : list
list of coordinate boundaries tuples (bottom, top)
Returns
-------
table : camelot.core.Table
"""
table = Table(cols, rows)
table.page = self.page
table.order = table_idx + 1
table._bbox = self.table_bboxes()[table_idx]
return table
@staticmethod
def _reduce_index(t, idx, shift_text):
"""Reduces index of a text object if it lies within a spanning
cell. Only useful for some parsers (e.g. Lattice), base method is a
noop.
"""
return idx
def compute_parse_errors(self, table):
pos_errors = []
# TODO: have a single list in place of two directional ones?
# sorted on x-coordinate based on reading order i.e. LTR or RTL
for direction in ["vertical", "horizontal"]:
for t in self.t_bbox[direction]:
indices, error = get_table_index(
table,
t,
direction,
split_text=self.split_text,
flag_size=self.flag_size,
strip_text=self.strip_text,
)
if indices[:2] != (-1, -1):
pos_errors.append(error)
indices = type(self)._reduce_index(
table,
indices,
shift_text=self.shift_text
)
for r_idx, c_idx, text in indices:
table.cells[r_idx][c_idx].text = text
return pos_errors
def _generate_columns_and_rows(self, bbox, user_cols):
# Pure virtual, must be defined by the derived parser
raise NotImplementedError()
def _generate_table(self, table_idx, cols, rows, **kwargs):
# Pure virtual, must be defined by the derived parser
raise NotImplementedError()
def _generate_table_bbox(self):
# Pure virtual, must be defined by the derived parser
raise NotImplementedError()
def extract_tables(self):
if self._document_has_no_text():
return []
# Identify plausible areas within the doc where tables lie,
# populate table_bbox keys with these areas.
self._generate_table_bbox()
_tables = []
# sort tables based on y-coord
for table_idx, bbox in enumerate(self.table_bboxes()):
if self.columns is not None and self.columns[table_idx] != "":
# user has to input boundary columns too
# take (0, pdf_width) by default
# similar to else condition
# len can't be 1
user_cols = self.columns[table_idx].split(",")
user_cols = [float(c) for c in user_cols]
else:
user_cols = None
cols, rows, v_s, h_s = self._generate_columns_and_rows(
bbox,
user_cols
)
table = self._generate_table(
table_idx, cols, rows, v_s=v_s, h_s=h_s)
_tables.append(table)
return _tables
def record_parse_metadata(self, table):
"""Record data about the origin of the table
"""
table.flavor = self.id
table.filename = self.filename
table.parse = self.table_bbox_parses[table._bbox]
table.parse_details = self.parse_details
pos_errors = self.compute_parse_errors(table)
table.accuracy = compute_accuracy([[100, pos_errors]])
if self.copy_text is not None:
table.copy_spanning_text(self.copy_text)
data = table.data
table.df = pd.DataFrame(data)
table.shape = table.df.shape
table.whitespace = compute_whitespace(data)
table.pdf_size = (self.pdf_width, self.pdf_height)
_text = []
_text.extend(
[(t.x0, t.y0, t.x1, t.y1) for t in self.horizontal_text])
_text.extend([(t.x0, t.y0, t.x1, t.y1) for t in self.vertical_text])
table._text = _text
table.textlines = self.horizontal_text + self.vertical_text
class TextBaseParser(BaseParser):
"""Base class for all text parsers.
"""
def __init__(
self,
parser_id,
table_regions=None,
table_areas=None,
columns=None,
flag_size=False,
split_text=False,
strip_text="",
edge_tol=50,
row_tol=2,
column_tol=0,
debug=False,
**kwargs):
super().__init__(
parser_id,
table_regions=table_regions,
table_areas=table_areas,
split_text=split_text,
strip_text=strip_text,
flag_size=flag_size,
debug=debug,
)
self.columns = columns
self._validate_columns()
self.edge_tol = edge_tol
self.row_tol = row_tol
self.column_tol = column_tol
@staticmethod
def _group_rows(text, row_tol=2):
"""Groups PDFMiner text objects into rows vertically
within a tolerance.
Parameters
----------
text : list
List of PDFMiner text objects.
row_tol : int, optional (default: 2)
Returns
-------
rows : list
Two-dimensional list of text objects grouped into rows.
"""
row_y = None
rows = []
temp = []
non_empty_text = [t for t in text if t.get_text().strip()]
for t in non_empty_text:
# is checking for upright necessary?
# if t.get_text().strip() and all([obj.upright \
# for obj in t._objs
# if type(obj) is LTChar]):
if row_y is None:
row_y = t.y0
elif not np.isclose(row_y, t.y0, atol=row_tol):
rows.append(sorted(temp, key=lambda t: t.x0))
temp = []
# We update the row's bottom as we go, to be forgiving if there
# is a gradual change across multiple columns.
row_y = t.y0
temp.append(t)
rows.append(sorted(temp, key=lambda t: t.x0))
return rows
@staticmethod
def _merge_columns(l, column_tol=0):
"""Merges column boundaries horizontally if they overlap
or lie within a tolerance.
Parameters
----------
l : list
List of column x-coordinate tuples.
column_tol : int, optional (default: 0)
Returns
-------
merged : list
List of merged column x-coordinate tuples.
"""
merged = []
for higher in l:
if not merged:
merged.append(higher)
else:
lower = merged[-1]
if column_tol >= 0:
if higher[0] <= lower[1] or np.isclose(
higher[0], lower[1], atol=column_tol
):
upper_bound = max(lower[1], higher[1])
lower_bound = min(lower[0], higher[0])
merged[-1] = (lower_bound, upper_bound)
else:
merged.append(higher)
elif column_tol < 0:
if higher[0] <= lower[1]:
if np.isclose(higher[0], lower[1],
atol=abs(column_tol)):
merged.append(higher)
else:
upper_bound = max(lower[1], higher[1])
lower_bound = min(lower[0], higher[0])
merged[-1] = (lower_bound, upper_bound)
else:
merged.append(higher)
return merged
@staticmethod
def _join_rows(rows_grouped, text_y_max, text_y_min):
"""Makes row coordinates continuous. For the row to "touch"
we split the existing gap between them in half.
Parameters
----------
rows_grouped : list
Two-dimensional list of text objects grouped into rows.
text_y_max : int
text_y_min : int
Returns
-------
rows : list
List of continuous row y-coordinate tuples.
"""
row_boundaries = [
[
max(t.y1 for t in r),
min(t.y0 for t in r)
]
for r in rows_grouped
]
for i in range(0, len(row_boundaries)-1):
top_row = row_boundaries[i]
bottom_row = row_boundaries[i+1]
top_row[1] = bottom_row[0] = (top_row[1] + bottom_row[0]) / 2
row_boundaries[0][0] = text_y_max
row_boundaries[-1][1] = text_y_min
return row_boundaries
@staticmethod
def _add_columns(cols, text, row_tol):
"""Adds columns to existing list by taking into account
the text that lies outside the current column x-coordinates.
Parameters
----------
cols : list
List of column x-coordinate tuples.
text : list
List of PDFMiner text objects.
ytol : int
Returns
-------
cols : list
Updated list of column x-coordinate tuples.
"""
if text:
text = TextBaseParser._group_rows(text, row_tol=row_tol)
elements = [len(r) for r in text]
new_cols = [
(t.x0, t.x1)
for r in text if len(r) == max(elements)
for t in r
]
cols.extend(TextBaseParser._merge_columns(sorted(new_cols)))
return cols
@staticmethod
def _join_columns(cols, text_x_min, text_x_max):
"""Makes column coordinates continuous.
Parameters
----------
cols : list
List of column x-coordinate tuples.
text_x_min : int
text_y_max : int
Returns
-------
cols : list
Updated list of column x-coordinate tuples.
"""
cols = sorted(cols)
cols = [(cols[i][0] + cols[i - 1][1]) / 2 for i in range(1, len(cols))]
cols.insert(0, text_x_min)
cols.append(text_x_max)
cols = [(cols[i], cols[i + 1]) for i in range(0, len(cols) - 1)]
return cols
def _validate_columns(self):
if self.table_areas is not None and self.columns is not None:
if len(self.table_areas) != len(self.columns):
raise ValueError("Length of table_areas and columns"
" should be equal")
def _generate_table(self, table_idx, cols, rows, **kwargs):
table = self._initialize_new_table(table_idx, cols, rows)
table = table.set_all_edges()
self.record_parse_metadata(table)
return table
def record_parse_metadata(self, table):
"""Record data about the origin of the table
"""
super().record_parse_metadata(table)
# for plotting
table._segments = None