camelot-py/lattice.py

312 lines
11 KiB
Python

import os
import cv2
import glob
import numpy as np
from table import Table
from pdf import get_pdf_info
from utils import (translate, scale, merge_close_values, get_row_idx,
get_column_idx, reduce_index, outline, fill, remove_empty)
def morph_transform(img, s=15, invert=False):
"""Morphological Transformation
Applies a series of morphological operations on the image
to find table contours and line segments.
http://answers.opencv.org/question/63847/how-to-extract-tables-from-an-image/
Empirical result for adaptiveThreshold's blockSize=5 and C=-0.2
taken from http://pequan.lip6.fr/~bereziat/pima/2012/seuillage/sezgin04.pdf
Parameters
----------
img : ndarray
s : int, default: 15, optional
Scaling factor. Large scaling factor leads to smaller lines
being detected.
invert : bool, default: False, optional
Invert pdf image to make sure that lines are in foreground.
Returns
-------
tables : dict
Dictionary with table bounding box as key and list of
joints found in the table as value.
v_segments : list
List of vertical line segments found in the image.
h_segments : list
List of horizontal line segments found in the image.
"""
img_x, img_y = img.shape[1], img.shape[0]
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
if invert:
threshold = cv2.adaptiveThreshold(
gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 15, -0.2)
else:
threshold = cv2.adaptiveThreshold(np.invert(
gray), 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 15, -0.2)
vertical = threshold
horizontal = threshold
scale = s
verticalsize = vertical.shape[0] / scale
horizontalsize = horizontal.shape[1] / scale
ver = cv2.getStructuringElement(cv2.MORPH_RECT, (1, verticalsize))
hor = cv2.getStructuringElement(cv2.MORPH_RECT, (horizontalsize, 1))
vertical = cv2.erode(vertical, ver, (-1, -1))
vertical = cv2.dilate(vertical, ver, (-1, -1))
horizontal = cv2.erode(horizontal, hor, (-1, -1))
horizontal = cv2.dilate(horizontal, hor, (-1, -1))
mask = vertical + horizontal
joints = np.bitwise_and(vertical, horizontal)
__, contours, __ = cv2.findContours(
mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
contours = sorted(contours, key=cv2.contourArea, reverse=True)[:10]
tables = {}
for c in contours:
c_poly = cv2.approxPolyDP(c, 3, True)
x, y, w, h = cv2.boundingRect(c_poly)
# find number of non-zero values in joints using what boundingRect
# returns
roi = joints[y : y + h, x : x + w]
__, jc, __ = cv2.findContours(
roi, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_SIMPLE)
if len(jc) <= 4: # remove contours with less than <=4 joints
continue
joint_coords = []
for j in jc:
jx, jy, jw, jh = cv2.boundingRect(j)
c1, c2 = x + (2 * jx + jw) / 2, y + (2 * jy + jh) / 2
joint_coords.append((c1, c2))
tables[(x, y + h, x + w, y)] = joint_coords
v_segments, h_segments = [], []
_, vcontours, _ = cv2.findContours(
vertical, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
for vc in vcontours:
x, y, w, h = cv2.boundingRect(vc)
x1, x2 = x, x + w
y1, y2 = y, y + h
v_segments.append(((x1 + x2) / 2, y2, (x1 + x2) / 2, y1))
_, hcontours, _ = cv2.findContours(
horizontal, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
for hc in hcontours:
x, y, w, h = cv2.boundingRect(hc)
x1, x2 = x, x + w
y1, y2 = y, y + h
h_segments.append((x1, (y1 + y2) / 2, x2, (y1 + y2) / 2))
return tables, v_segments, h_segments
def lattice(filepath, f=None, s=15, jtol=2, mtol=2, invert=False, debug=None):
"""Lattice algorithm
Makes table using pdf geometry information returned by
morph_transform and fills data returned by PDFMiner in table cells.
Parameters
----------
filepath : string
f : string, default: None, optional
Fill data in horizontal and/or vertical spanning
cells. ('h', 'v', 'hv')
s : int, default: 15, optional
Scaling factor. Large scaling factor leads to smaller lines
being detected.
jtol : int, default: 2, optional
Tolerance to account for when comparing joint and line
coordinates.
mtol : int, default: 2, optional
Tolerance to account for when merging lines which are
very close.
invert : bool, default: False, optional
Invert pdf image to make sure that lines are in foreground.
debug : string
Debug by visualizing pdf geometry.
('contour', 'line', 'joint', 'table')
Returns
-------
output : dict
Dictionary with table number as key and list of data as value.
"""
if debug:
import matplotlib.pyplot as plt
filename = os.path.basename(filepath)
print "working on", filename
fileroot, __ = os.path.splitext(filepath)
imagename = fileroot + '.png'
img = cv2.imread(imagename)
img_x, img_y = img.shape[1], img.shape[0]
text, pdf_x, pdf_y = get_pdf_info(filepath, method='lattice')
scaling_factor_x = pdf_x / float(img_x)
scaling_factor_y = pdf_y / float(img_y)
tables, v_segments, h_segments = morph_transform(img, s=s, invert=invert)
if debug == "contour":
for t in tables.keys():
cv2.rectangle(img, (t[0], t[1]), (t[2], t[3]), (255, 0, 0), 3)
plt.imshow(img)
plt.show()
return None
if debug == "joint":
x_coord = []
y_coord = []
for k in tables.keys():
for coord in tables[k]:
x_coord.append(coord[0])
y_coord.append(coord[1])
max_x, max_y = max(x_coord), max(y_coord)
plt.plot(x_coord, y_coord, 'ro')
plt.axis([0, max_x + 100, max_y + 100, 0])
plt.imshow(img)
plt.show()
return None
# detect if vertical
num_v = [t for t in text if (not t.upright) and t.get_text().strip()]
num_h = [t for t in text if t.upright and t.get_text().strip()]
vger = len(num_v) / float(len(num_v) + len(num_h))
rotated = ''
if vger > 0.8:
clockwise = sum(t.matrix[1] < 0 and t.matrix[2] > 0 for t in text)
anticlockwise = sum(t.matrix[1] > 0 and t.matrix[2] < 0 for t in text)
rotated = 'left' if clockwise < anticlockwise else 'right'
tables_new = {}
for k in tables.keys():
x1, y1, x2, y2 = k
x1 = scale(x1, scaling_factor_x)
y1 = scale(abs(translate(-img_y, y1)), scaling_factor_y)
x2 = scale(x2, scaling_factor_x)
y2 = scale(abs(translate(-img_y, y2)), scaling_factor_y)
j_x, j_y = zip(*tables[k])
j_x = [scale(j, scaling_factor_x) for j in j_x]
j_y = [scale(abs(translate(-img_y, j)), scaling_factor_y) for j in j_y]
joints = zip(j_x, j_y)
tables_new[(x1, y1, x2, y2)] = joints
v_segments_new = []
for v in v_segments:
x1, x2 = scale(v[0], scaling_factor_x), scale(v[2], scaling_factor_x)
y1, y2 = scale(abs(translate(-img_y, v[1])), scaling_factor_y), scale(
abs(translate(-img_y, v[3])), scaling_factor_y)
v_segments_new.append((x1, y1, x2, y2))
h_segments_new = []
for h in h_segments:
x1, x2 = scale(h[0], scaling_factor_x), scale(h[2], scaling_factor_x)
y1, y2 = scale(abs(translate(-img_y, h[1])), scaling_factor_y), scale(
abs(translate(-img_y, h[3])), scaling_factor_y)
h_segments_new.append((x1, y1, x2, y2))
num_tables = 1
output = {}
# sort tables based on y-coord
for k in sorted(tables_new.keys(), key=lambda x: x[1], reverse=True):
# find rows and columns that lie in table
lb = (k[0], k[1])
rt = (k[2], k[3])
v_s = [v for v in v_segments_new if v[1] > lb[1] - 2 and v[3]
< rt[1] + 2 and lb[0] - 2 <= v[0] <= rt[0] + 2]
h_s = [h for h in h_segments_new if h[0] > lb[0] - 2 and h[2]
< rt[0] + 2 and lb[1] - 2 <= h[1] <= rt[1] + 2]
if debug == "line":
for v in v_s:
plt.plot([v[0], v[2]], [v[1], v[3]])
for h in h_s:
plt.plot([h[0], h[2]], [h[1], h[3]])
columns, rows = zip(*tables_new[k])
columns, rows = list(columns), list(rows)
columns.extend([lb[0], rt[0]])
rows.extend([lb[1], rt[1]])
# sort horizontal and vertical segments
columns = merge_close_values(sorted(columns), mtol=mtol)
rows = merge_close_values(sorted(rows, reverse=True), mtol=mtol)
# make grid using x and y coord of shortlisted rows and columns
columns = [(columns[i], columns[i + 1])
for i in range(0, len(columns) - 1)]
rows = [(rows[i], rows[i + 1]) for i in range(0, len(rows) - 1)]
table = Table(columns, rows)
# light up cell edges
table = table.set_edges(v_s, h_s, jtol=jtol)
# table set span method
table = table.set_spanning()
# light up table border
table = outline(table)
if debug == "table":
for i in range(len(table.cells)):
for j in range(len(table.cells[i])):
if table.cells[i][j].left:
plt.plot([table.cells[i][j].lb[0], table.cells[i][j].lt[0]],
[table.cells[i][j].lb[1], table.cells[i][j].lt[1]])
if table.cells[i][j].right:
plt.plot([table.cells[i][j].rb[0], table.cells[i][j].rt[0]],
[table.cells[i][j].rb[1], table.cells[i][j].rt[1]])
if table.cells[i][j].top:
plt.plot([table.cells[i][j].lt[0], table.cells[i][j].rt[0]],
[table.cells[i][j].lt[1], table.cells[i][j].rt[1]])
if table.cells[i][j].bottom:
plt.plot([table.cells[i][j].lb[0], table.cells[i][j].rb[0]],
[table.cells[i][j].lb[1], table.cells[i][j].rb[1]])
# fill text after sorting it
if not rotated:
text.sort(key=lambda x: (-x.y0, x.x0))
elif rotated == 'left':
text.sort(key=lambda x: (x.x0, x.y0))
elif rotated == 'right':
text.sort(key=lambda x: (-x.x0, -x.y0))
for t in text:
r_idx = get_row_idx(t, rows)
c_idx = get_column_idx(t, columns)
if None in [r_idx, c_idx]:
pass
else:
r_idx, c_idx = reduce_index(table, rotated, r_idx, c_idx)
table.cells[r_idx][c_idx].add_text(t.get_text().strip('\n'))
if f is not None:
table = fill(table, f=f)
data = []
for i in range(len(table.cells)):
data.append([table.cells[i][j].get_text().strip().encode('utf-8')
for j in range(len(table.cells[i]))])
if rotated == 'left':
data = zip(*data[::-1])
elif rotated == 'right':
data = zip(*data[::1])
data.reverse()
data = remove_empty(data)
output['table_%d' % num_tables] = data
num_tables += 1
if debug in ['line', 'table']:
plt.show()
return None
return output