250 lines
9.0 KiB
Python
250 lines
9.0 KiB
Python
from __future__ import division
|
|
import os
|
|
import types
|
|
import logging
|
|
import copy_reg
|
|
import subprocess
|
|
|
|
from .imgproc import (adaptive_threshold, find_lines, find_table_contours,
|
|
find_table_joints)
|
|
from .table import Table
|
|
from .utils import (scale_to_pdf, scale_to_image, segments_bbox, text_bbox,
|
|
detect_vertical, merge_close_values, get_row_index,
|
|
get_column_index, get_score, reduce_index, outline,
|
|
fill_spanning, count_empty, encode_list, pdf_to_text)
|
|
|
|
|
|
__all__ = ['Lattice']
|
|
|
|
|
|
def _reduce_method(m):
|
|
if m.im_self is None:
|
|
return getattr, (m.im_class, m.im_func.func_name)
|
|
else:
|
|
return getattr, (m.im_self, m.im_func.func_name)
|
|
copy_reg.pickle(types.MethodType, _reduce_method)
|
|
|
|
|
|
class Lattice:
|
|
"""Lattice algorithm
|
|
|
|
Makes use of pdf geometry by processing its image, to make a table
|
|
and fills text objects in table cells.
|
|
|
|
Parameters
|
|
----------
|
|
pdfobject : camelot.pdf.Pdf
|
|
|
|
fill : string
|
|
Fill data in horizontal and/or vertical spanning
|
|
cells. (optional, default: None) {None, 'h', 'v', 'hv'}
|
|
|
|
scale : int
|
|
Scaling factor. Large scaling factor leads to smaller lines
|
|
being detected. (optional, default: 15)
|
|
|
|
mtol : int
|
|
Tolerance to account for when merging lines which are
|
|
very close. (optional, default: 2)
|
|
|
|
invert : bool
|
|
Invert pdf image to make sure that lines are in foreground.
|
|
(optional, default: False)
|
|
|
|
debug : string
|
|
Debug by visualizing pdf geometry.
|
|
(optional, default: None) {'contour', 'line', 'joint', 'table'}
|
|
|
|
Attributes
|
|
----------
|
|
tables : dict
|
|
Dictionary with page number as key and list of tables on that
|
|
page as value.
|
|
"""
|
|
def __init__(self, table_area=None, fill=None, mtol=[2], scale=15,
|
|
invert=False, margins=(2.0, 0.5, 0.1), debug=None):
|
|
|
|
self.method = 'lattice'
|
|
self.table_area = table_area
|
|
self.fill = fill
|
|
self.mtol = mtol
|
|
self.scale = scale
|
|
self.invert = invert
|
|
self.char_margin, self.line_margin, self.word_margin = margins
|
|
self.debug = debug
|
|
|
|
def get_tables(self, pdfname):
|
|
"""Returns all tables found in given pdf.
|
|
|
|
Returns
|
|
-------
|
|
tables : dict
|
|
Dictionary with page number as key and list of tables on that
|
|
page as value.
|
|
"""
|
|
text, __, width, height = pdf_to_text(pdfname, self.char_margin,
|
|
self.line_margin, self.word_margin)
|
|
bname, __ = os.path.splitext(pdfname)
|
|
if not text:
|
|
logging.warning("{0}: PDF has no text. It may be an image.".format(
|
|
os.path.basename(bname)))
|
|
return None
|
|
|
|
imagename = ''.join([bname, '.jpg'])
|
|
gs_call = [
|
|
"-q", "-sDEVICE=png16m", "-o", imagename, "-r600", pdfname
|
|
]
|
|
if "ghostscript" in subprocess.check_output(["gs", "-version"]).lower():
|
|
gs_call.insert(0, "gs")
|
|
else:
|
|
gs_call.insert(0, "gsc")
|
|
subprocess.call(gs_call)
|
|
|
|
img, threshold = adaptive_threshold(imagename, invert=self.invert)
|
|
pdf_x = width
|
|
pdf_y = height
|
|
img_x = img.shape[1]
|
|
img_y = img.shape[0]
|
|
sc_x_image = img_x / float(pdf_x)
|
|
sc_y_image = img_y / float(pdf_y)
|
|
sc_x_pdf = pdf_x / float(img_x)
|
|
sc_y_pdf = pdf_y / float(img_y)
|
|
factors_image = (sc_x_image, sc_y_image, pdf_y)
|
|
factors_pdf = (sc_x_pdf, sc_y_pdf, img_y)
|
|
|
|
vmask, v_segments = find_lines(threshold, direction='vertical',
|
|
scale=self.scale)
|
|
hmask, h_segments = find_lines(threshold, direction='horizontal',
|
|
scale=self.scale)
|
|
|
|
if self.table_area is not None:
|
|
if self.fill is not None:
|
|
if len(self.table_area) != len(self.fill):
|
|
raise ValueError("message")
|
|
areas = []
|
|
for area in self.table_area:
|
|
x1, y1, x2, y2 = area.split(",")
|
|
x1 = int(x1)
|
|
y1 = int(y1)
|
|
x2 = int(x2)
|
|
y2 = int(y2)
|
|
x1, y1, x2, y2 = scale_to_image((x1, y1, x2, y2), factors_image)
|
|
areas.append((x1, y1, abs(x2 - x1), abs(y2 - y1)))
|
|
table_bbox = find_table_joints(areas, vmask, hmask)
|
|
else:
|
|
contours = find_table_contours(vmask, hmask)
|
|
table_bbox = find_table_joints(contours, vmask, hmask)
|
|
|
|
if len(self.mtol) == 1 and self.mtol[0] == 2:
|
|
self.mtol = self.mtol * len(table_bbox)
|
|
|
|
if self.debug:
|
|
self.debug_images = (img, table_bbox)
|
|
|
|
table_bbox, v_segments, h_segments = scale_to_pdf(table_bbox, v_segments,
|
|
h_segments, factors_pdf)
|
|
|
|
if self.debug:
|
|
self.debug_segments = (v_segments, h_segments)
|
|
self.debug_tables = []
|
|
|
|
page = {}
|
|
tables = {}
|
|
table_no = 0
|
|
# sort tables based on y-coord
|
|
for k in sorted(table_bbox.keys(), key=lambda x: x[1], reverse=True):
|
|
# select elements which lie within table_bbox
|
|
table_data = {}
|
|
v_s, h_s = segments_bbox(k, v_segments, h_segments)
|
|
t_bbox = text_bbox(k, text)
|
|
table_data['text_p'] = 100 * (1 - (len(t_bbox) / len(text)))
|
|
table_rotation = detect_vertical(t_bbox)
|
|
cols, rows = zip(*table_bbox[k])
|
|
cols, rows = list(cols), list(rows)
|
|
cols.extend([k[0], k[2]])
|
|
rows.extend([k[1], k[3]])
|
|
# sort horizontal and vertical segments
|
|
cols = merge_close_values(sorted(cols), mtol=self.mtol[table_no])
|
|
rows = merge_close_values(
|
|
sorted(rows, reverse=True), mtol=self.mtol[table_no])
|
|
# make grid using x and y coord of shortlisted rows and cols
|
|
cols = [(cols[i], cols[i + 1])
|
|
for i in range(0, len(cols) - 1)]
|
|
rows = [(rows[i], rows[i + 1])
|
|
for i in range(0, len(rows) - 1)]
|
|
table = Table(cols, rows)
|
|
# set table edges to True using ver+hor lines
|
|
table = table.set_edges(v_s, h_s)
|
|
nouse = table.nocont_ / (len(v_s) + len(h_s))
|
|
table_data['line_p'] = 100 * (1 - nouse)
|
|
# set spanning cells to True
|
|
table = table.set_spanning()
|
|
# set table border edges to True
|
|
table = outline(table)
|
|
|
|
if self.debug:
|
|
self.debug_tables.append(table)
|
|
|
|
rerror = []
|
|
cerror = []
|
|
for t in text:
|
|
try:
|
|
r_idx, rass_error = get_row_index(t, rows)
|
|
except TypeError:
|
|
# couldn't assign LTChar to any cell
|
|
continue
|
|
try:
|
|
c_idx, cass_error = get_column_index(t, cols)
|
|
except TypeError:
|
|
# couldn't assign LTChar to any cell
|
|
continue
|
|
rerror.append(rass_error)
|
|
cerror.append(cass_error)
|
|
r_idx, c_idx = reduce_index(table, table_rotation, r_idx, c_idx)
|
|
table.cells[r_idx][c_idx].add_object(t)
|
|
|
|
for i in range(len(table.cells)):
|
|
for j in range(len(table.cells[i])):
|
|
t_bbox = table.cells[i][j].get_objects()
|
|
try:
|
|
cell_rotation = detect_vertical(t_bbox)
|
|
except ZeroDivisionError:
|
|
cell_rotation = ''
|
|
pass
|
|
# fill text after sorting it
|
|
if cell_rotation == '':
|
|
t_bbox.sort(key=lambda x: (-x.y0, x.x0))
|
|
elif cell_rotation == 'left':
|
|
t_bbox.sort(key=lambda x: (x.x0, x.y0))
|
|
elif cell_rotation == 'right':
|
|
t_bbox.sort(key=lambda x: (-x.x0, -x.y0))
|
|
table.cells[i][j].add_text(''.join([t.get_text()
|
|
for t in t_bbox]))
|
|
|
|
score = get_score([[50, rerror], [50, cerror]])
|
|
table_data['score'] = score
|
|
|
|
if self.fill is not None:
|
|
table = fill_spanning(table, fill=self.fill[table_no])
|
|
ar = table.get_list()
|
|
if table_rotation == 'left':
|
|
ar = zip(*ar[::-1])
|
|
elif table_rotation == 'right':
|
|
ar = zip(*ar[::1])
|
|
ar.reverse()
|
|
ar = encode_list(ar)
|
|
table_data['data'] = ar
|
|
empty_p, r_nempty_cells, c_nempty_cells = count_empty(ar)
|
|
table_data['empty_p'] = empty_p
|
|
table_data['r_nempty_cells'] = r_nempty_cells
|
|
table_data['c_nempty_cells'] = c_nempty_cells
|
|
table_data['nrows'] = len(ar)
|
|
table_data['ncols'] = len(ar[0])
|
|
tables['table-{0}'.format(table_no + 1)] = table_data
|
|
table_no += 1
|
|
page[os.path.basename(bname)] = tables
|
|
|
|
if self.debug:
|
|
return None
|
|
|
|
return page |