428 lines
14 KiB
Python
428 lines
14 KiB
Python
from __future__ import division
|
|
import os
|
|
import copy
|
|
import types
|
|
import logging
|
|
import copy_reg
|
|
import warnings
|
|
|
|
import numpy as np
|
|
|
|
from .table import Table
|
|
from .utils import (text_in_bbox, get_table_index, get_score, count_empty,
|
|
encode_list, get_text_objects, get_page_layout)
|
|
|
|
|
|
__all__ = ['Stream']
|
|
logger = logging.getLogger('app_logger')
|
|
|
|
|
|
def _reduce_method(m):
|
|
if m.im_self is None:
|
|
return getattr, (m.im_class, m.im_func.func_name)
|
|
else:
|
|
return getattr, (m.im_self, m.im_func.func_name)
|
|
copy_reg.pickle(types.MethodType, _reduce_method)
|
|
|
|
|
|
def _text_bbox(t_bbox):
|
|
"""Returns bounding box for the text present on a page.
|
|
|
|
Parameters
|
|
----------
|
|
t_bbox : dict
|
|
Dict with two keys 'horizontal' and 'vertical' with lists of
|
|
LTTextLineHorizontals and LTTextLineVerticals respectively.
|
|
|
|
Returns
|
|
-------
|
|
text_bbox : tuple
|
|
Tuple of the form (x0, y0, x1, y1) in PDFMiner's coordinate
|
|
space.
|
|
"""
|
|
xmin = min([t.x0 for direction in t_bbox for t in t_bbox[direction]])
|
|
ymin = min([t.y0 for direction in t_bbox for t in t_bbox[direction]])
|
|
xmax = max([t.x1 for direction in t_bbox for t in t_bbox[direction]])
|
|
ymax = max([t.y1 for direction in t_bbox for t in t_bbox[direction]])
|
|
text_bbox = (xmin, ymin, xmax, ymax)
|
|
return text_bbox
|
|
|
|
|
|
def _group_rows(text, ytol=2):
|
|
"""Groups PDFMiner text objects into rows using their
|
|
y-coordinates taking into account some tolerance ytol.
|
|
|
|
Parameters
|
|
----------
|
|
text : list
|
|
List of PDFMiner text objects.
|
|
|
|
ytol : int
|
|
Tolerance parameter.
|
|
(optional, default: 2)
|
|
|
|
Returns
|
|
-------
|
|
rows : list
|
|
Two-dimensional list of text objects grouped into rows.
|
|
"""
|
|
row_y = 0
|
|
rows = []
|
|
temp = []
|
|
for t in text:
|
|
# is checking for upright necessary?
|
|
# if t.get_text().strip() and all([obj.upright for obj in t._objs if
|
|
# type(obj) is LTChar]):
|
|
if t.get_text().strip():
|
|
if not np.isclose(row_y, t.y0, atol=ytol):
|
|
rows.append(sorted(temp, key=lambda t: t.x0))
|
|
temp = []
|
|
row_y = t.y0
|
|
temp.append(t)
|
|
rows.append(sorted(temp, key=lambda t: t.x0))
|
|
__ = rows.pop(0) # hacky
|
|
return rows
|
|
|
|
|
|
def _merge_columns(l, mtol=0):
|
|
"""Merges column boundaries if they overlap or lie within some
|
|
tolerance mtol.
|
|
|
|
Parameters
|
|
----------
|
|
l : list
|
|
List of column coordinate tuples.
|
|
|
|
mtol : int
|
|
TODO
|
|
(optional, default: 0)
|
|
|
|
Returns
|
|
-------
|
|
merged : list
|
|
List of merged column coordinate tuples.
|
|
"""
|
|
merged = []
|
|
for higher in l:
|
|
if not merged:
|
|
merged.append(higher)
|
|
else:
|
|
lower = merged[-1]
|
|
if mtol >= 0:
|
|
if (higher[0] <= lower[1] or
|
|
np.isclose(higher[0], lower[1], atol=mtol)):
|
|
upper_bound = max(lower[1], higher[1])
|
|
lower_bound = min(lower[0], higher[0])
|
|
merged[-1] = (lower_bound, upper_bound)
|
|
else:
|
|
merged.append(higher)
|
|
elif mtol < 0:
|
|
if higher[0] <= lower[1]:
|
|
if np.isclose(higher[0], lower[1], atol=abs(mtol)):
|
|
merged.append(higher)
|
|
else:
|
|
upper_bound = max(lower[1], higher[1])
|
|
lower_bound = min(lower[0], higher[0])
|
|
merged[-1] = (lower_bound, upper_bound)
|
|
else:
|
|
merged.append(higher)
|
|
return merged
|
|
|
|
|
|
def _join_rows(rows_grouped, text_y_max, text_y_min):
|
|
"""Makes row coordinates continuous.
|
|
|
|
Parameters
|
|
----------
|
|
rows_grouped : list
|
|
Two-dimensional list of text objects grouped into rows.
|
|
|
|
text_y_max : int
|
|
|
|
text_y_min : int
|
|
|
|
Returns
|
|
-------
|
|
rows : list
|
|
List of continuous row coordinate tuples.
|
|
"""
|
|
row_mids = [sum([(t.y0 + t.y1) / 2 for t in r]) / len(r)
|
|
if len(r) > 0 else 0 for r in rows_grouped]
|
|
rows = [(row_mids[i] + row_mids[i - 1]) / 2 for i in range(1, len(row_mids))]
|
|
rows.insert(0, text_y_max)
|
|
rows.append(text_y_min)
|
|
rows = [(rows[i], rows[i + 1])
|
|
for i in range(0, len(rows) - 1)]
|
|
return rows
|
|
|
|
|
|
def _join_columns(cols, text_x_min, text_x_max):
|
|
"""Makes column coordinates continuous.
|
|
|
|
Parameters
|
|
----------
|
|
cols : list
|
|
List of column coordinate tuples.
|
|
|
|
text_x_min : int
|
|
|
|
text_y_max : int
|
|
|
|
Returns
|
|
-------
|
|
cols : list
|
|
Updated list of column coordinate tuples.
|
|
"""
|
|
cols = sorted(cols)
|
|
cols = [(cols[i][0] + cols[i - 1][1]) / 2 for i in range(1, len(cols))]
|
|
cols.insert(0, text_x_min)
|
|
cols.append(text_x_max)
|
|
cols = [(cols[i], cols[i + 1])
|
|
for i in range(0, len(cols) - 1)]
|
|
return cols
|
|
|
|
|
|
def _add_columns(cols, text, ytol):
|
|
"""Adds columns to existing list by taking into account
|
|
the text that lies outside the current column coordinates.
|
|
|
|
Parameters
|
|
----------
|
|
cols : list
|
|
List of column coordinate tuples.
|
|
|
|
text : list
|
|
List of PDFMiner text objects.
|
|
|
|
ytol : int
|
|
Tolerance parameter.
|
|
|
|
Returns
|
|
-------
|
|
cols : list
|
|
Updated list of column coordinate tuples.
|
|
"""
|
|
if text:
|
|
text = _group_rows(text, ytol=ytol)
|
|
elements = [len(r) for r in text]
|
|
new_cols = [(t.x0, t.x1)
|
|
for r in text if len(r) == max(elements) for t in r]
|
|
cols.extend(_merge_columns(sorted(new_cols)))
|
|
return cols
|
|
|
|
|
|
class Stream:
|
|
"""Stream looks for spaces between text elements to form a table.
|
|
|
|
If you want to give columns, ytol or mtol for each table
|
|
when specifying multiple table areas, make sure that their length
|
|
is equal to the length of table_area. Mapping between them is based
|
|
on index.
|
|
|
|
If you don't want to specify columns for the some tables in a pdf
|
|
page having multiple tables, pass them as empty strings.
|
|
For example: ['', 'x1,x2,x3,x4', '']
|
|
|
|
Parameters
|
|
----------
|
|
table_area : list
|
|
List of strings of the form x1,y1,x2,y2 where
|
|
(x1, y1) -> left-top and (x2, y2) -> right-bottom in PDFMiner's
|
|
coordinate space, denoting table areas to analyze.
|
|
(optional, default: None)
|
|
|
|
columns : list
|
|
List of strings where each string is comma-separated values of
|
|
x-coordinates in PDFMiner's coordinate space.
|
|
(optional, default: None)
|
|
|
|
ytol : list
|
|
List of ints specifying the y-tolerance parameters.
|
|
(optional, default: [2])
|
|
|
|
mtol : list
|
|
List of ints specifying the m-tolerance parameters.
|
|
(optional, default: [0])
|
|
|
|
margins : tuple
|
|
PDFMiner margins. (char_margin, line_margin, word_margin)
|
|
(optional, default: (1.0, 0.5, 0.1))
|
|
|
|
split_text : bool
|
|
Whether or not to split a text line if it spans across
|
|
different cells.
|
|
(optional, default: False)
|
|
|
|
flag_size : bool
|
|
Whether or not to highlight a substring using <s></s>
|
|
if its size is different from rest of the string, useful for
|
|
super and subscripts.
|
|
(optional, default: True)
|
|
|
|
debug : bool
|
|
Set to True to generate a matplotlib plot of
|
|
LTTextLineHorizontals in order to select table_area, columns.
|
|
(optional, default: False)
|
|
"""
|
|
def __init__(self, table_area=None, columns=None, ytol=[2], mtol=[0],
|
|
margins=(1.0, 0.5, 0.1), split_text=False, flag_size=True,
|
|
debug=False):
|
|
|
|
self.method = 'stream'
|
|
self.table_area = table_area
|
|
self.columns = columns
|
|
self.ytol = ytol
|
|
self.mtol = mtol
|
|
self.char_margin, self.line_margin, self.word_margin = margins
|
|
self.split_text = split_text
|
|
self.flag_size = flag_size
|
|
self.debug = debug
|
|
|
|
def get_tables(self, pdfname):
|
|
"""Expects a single page pdf as input with rotation corrected.
|
|
|
|
Parameters
|
|
---------
|
|
pdfname : string
|
|
Path to single page pdf file.
|
|
|
|
Returns
|
|
-------
|
|
page : dict
|
|
"""
|
|
layout, dim = get_page_layout(pdfname, char_margin=self.char_margin,
|
|
line_margin=self.line_margin, word_margin=self.word_margin)
|
|
lttextlh = get_text_objects(layout, ltype="lh")
|
|
lttextlv = get_text_objects(layout, ltype="lv")
|
|
ltchar = get_text_objects(layout, ltype="char")
|
|
width, height = dim
|
|
bname, __ = os.path.splitext(pdfname)
|
|
logger.info('Processing {0}.'.format(os.path.basename(bname)))
|
|
if not lttextlh:
|
|
warnings.warn("{0}: Page contains no text.".format(
|
|
os.path.basename(bname)))
|
|
return {os.path.basename(bname): None}
|
|
|
|
if self.debug:
|
|
self.debug_text = []
|
|
self.debug_text.extend([(t.x0, t.y0, t.x1, t.y1) for t in lttextlh])
|
|
self.debug_text.extend([(t.x0, t.y0, t.x1, t.y1) for t in lttextlv])
|
|
return None
|
|
|
|
if self.table_area is not None:
|
|
if self.columns is not None:
|
|
if len(self.table_area) != len(self.columns):
|
|
raise ValueError("{0}: Length of table area and columns"
|
|
" should be equal.".format(os.path.basename(bname)))
|
|
|
|
table_bbox = {}
|
|
for area in self.table_area:
|
|
x1, y1, x2, y2 = area.split(",")
|
|
x1 = float(x1)
|
|
y1 = float(y1)
|
|
x2 = float(x2)
|
|
y2 = float(y2)
|
|
table_bbox[(x1, y2, x2, y1)] = None
|
|
else:
|
|
table_bbox = {(0, 0, width, height): None}
|
|
|
|
if len(self.ytol) == 1 and self.ytol[0] == 2:
|
|
ytolerance = copy.deepcopy(self.ytol) * len(table_bbox)
|
|
else:
|
|
ytolerance = copy.deepcopy(self.ytol)
|
|
|
|
if len(self.mtol) == 1 and self.mtol[0] == 0:
|
|
mtolerance = copy.deepcopy(self.mtol) * len(table_bbox)
|
|
else:
|
|
mtolerance = copy.deepcopy(self.mtol)
|
|
|
|
page = {}
|
|
tables = {}
|
|
# sort tables based on y-coord
|
|
for table_no, k in enumerate(sorted(table_bbox.keys(), key=lambda x: x[1], reverse=True)):
|
|
# select elements which lie within table_bbox
|
|
table_data = {}
|
|
t_bbox = {}
|
|
t_bbox['horizontal'] = text_in_bbox(k, lttextlh)
|
|
t_bbox['vertical'] = text_in_bbox(k, lttextlv)
|
|
char_bbox = text_in_bbox(k, ltchar)
|
|
table_data['text_p'] = 100 * (1 - (len(char_bbox) / len(ltchar)))
|
|
for direction in t_bbox:
|
|
t_bbox[direction].sort(key=lambda x: (-x.y0, x.x0))
|
|
text_x_min, text_y_min, text_x_max, text_y_max = _text_bbox(t_bbox)
|
|
rows_grouped = _group_rows(t_bbox['horizontal'], ytol=ytolerance[table_no])
|
|
rows = _join_rows(rows_grouped, text_y_max, text_y_min)
|
|
elements = [len(r) for r in rows_grouped]
|
|
|
|
guess = False
|
|
if self.columns is not None and self.columns[table_no] != "":
|
|
# user has to input boundary columns too
|
|
# take (0, width) by default
|
|
# similar to else condition
|
|
# len can't be 1
|
|
cols = self.columns[table_no].split(',')
|
|
cols = [float(c) for c in cols]
|
|
cols.insert(0, text_x_min)
|
|
cols.append(text_x_max)
|
|
cols = [(cols[i], cols[i + 1]) for i in range(0, len(cols) - 1)]
|
|
else:
|
|
guess = True
|
|
ncols = max(set(elements), key=elements.count)
|
|
len_non_mode = len(filter(lambda x: x != ncols, elements))
|
|
if ncols == 1:
|
|
# no tables detected
|
|
warnings.warn("{0}: Page contains no tables.".format(
|
|
os.path.basename(bname)))
|
|
cols = [(t.x0, t.x1)
|
|
for r in rows_grouped if len(r) == ncols for t in r]
|
|
cols = _merge_columns(sorted(cols), mtol=mtolerance[table_no])
|
|
inner_text = []
|
|
for i in range(1, len(cols)):
|
|
left = cols[i - 1][1]
|
|
right = cols[i][0]
|
|
inner_text.extend([t for direction in t_bbox
|
|
for t in t_bbox[direction]
|
|
if t.x0 > left and t.x1 < right])
|
|
outer_text = [t for direction in t_bbox
|
|
for t in t_bbox[direction]
|
|
if t.x0 > cols[-1][1] or t.x1 < cols[0][0]]
|
|
inner_text.extend(outer_text)
|
|
cols = _add_columns(cols, inner_text, ytolerance[table_no])
|
|
cols = _join_columns(cols, text_x_min, text_x_max)
|
|
|
|
table = Table(cols, rows)
|
|
table = table.set_all_edges()
|
|
assignment_errors = []
|
|
table_data['split_text'] = []
|
|
table_data['superscript'] = []
|
|
for direction in t_bbox:
|
|
for t in t_bbox[direction]:
|
|
indices, error = get_table_index(
|
|
table, t, direction, split_text=self.split_text,
|
|
flag_size=self.flag_size)
|
|
assignment_errors.append(error)
|
|
if len(indices) > 1:
|
|
table_data['split_text'].append(indices)
|
|
for r_idx, c_idx, text in indices:
|
|
if all(s in text for s in ['<s>', '</s>']):
|
|
table_data['superscript'].append((r_idx, c_idx, text))
|
|
table.cells[r_idx][c_idx].add_text(text)
|
|
if guess:
|
|
score = get_score([[66, assignment_errors], [34, [len_non_mode / len(elements)]]])
|
|
else:
|
|
score = get_score([[100, assignment_errors]])
|
|
|
|
table_data['score'] = score
|
|
ar = table.get_list()
|
|
ar = encode_list(ar)
|
|
table_data['data'] = ar
|
|
empty_p, r_nempty_cells, c_nempty_cells = count_empty(ar)
|
|
table_data['empty_p'] = empty_p
|
|
table_data['r_nempty_cells'] = r_nempty_cells
|
|
table_data['c_nempty_cells'] = c_nempty_cells
|
|
table_data['nrows'] = len(ar)
|
|
table_data['ncols'] = len(ar[0])
|
|
tables['table-{0}'.format(table_no + 1)] = table_data
|
|
page[os.path.basename(bname)] = tables
|
|
|
|
return page |