camelot-py/camelot/image_processing.py

209 lines
5.4 KiB
Python

from __future__ import division
from itertools import groupby
from operator import itemgetter
import cv2
import numpy as np
from .utils import merge_tuples
def adaptive_threshold(imagename, process_background=False, blocksize=15, c=-2):
"""
Parameters
----------
imagename
process_background
blocksize
c
Returns
-------
"""
img = cv2.imread(imagename)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
if process_background:
threshold = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY, blocksize, c)
else:
threshold = cv2.adaptiveThreshold(np.invert(gray), 255,
cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, blocksize, c)
return img, threshold
def find_lines(threshold, direction='horizontal', line_size_scaling=15, iterations=0):
"""
Parameters
----------
threshold
direction
line_size_scaling
iterations
Returns
-------
"""
lines = []
if direction == 'vertical':
size = threshold.shape[0] // line_size_scaling
el = cv2.getStructuringElement(cv2.MORPH_RECT, (1, size))
elif direction == 'horizontal':
size = threshold.shape[1] // line_size_scaling
el = cv2.getStructuringElement(cv2.MORPH_RECT, (size, 1))
elif direction is None:
raise ValueError("Specify direction as either 'vertical' or"
" 'horizontal'")
threshold = cv2.erode(threshold, el)
threshold = cv2.dilate(threshold, el)
dmask = cv2.dilate(threshold, el, iterations=iterations)
try:
_, contours, _ = cv2.findContours(
threshold, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
except ValueError:
contours, _ = cv2.findContours(
threshold, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
for c in contours:
x, y, w, h = cv2.boundingRect(c)
x1, x2 = x, x + w
y1, y2 = y, y + h
if direction == 'vertical':
lines.append(((x1 + x2) // 2, y2, (x1 + x2) // 2, y1))
elif direction == 'horizontal':
lines.append((x1, (y1 + y2) // 2, x2, (y1 + y2) // 2))
return dmask, lines
def find_table_contours(vertical, horizontal):
"""
Parameters
----------
vertical
horizontal
Returns
-------
"""
mask = vertical + horizontal
try:
__, contours, __ = cv2.findContours(
mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
except ValueError:
contours, __ = cv2.findContours(
mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
contours = sorted(contours, key=cv2.contourArea, reverse=True)[:10]
cont = []
for c in contours:
c_poly = cv2.approxPolyDP(c, 3, True)
x, y, w, h = cv2.boundingRect(c_poly)
cont.append((x, y, w, h))
return cont
def find_table_joints(contours, vertical, horizontal):
"""
Parameters
----------
contours
vertical
horizontal
Returns
-------
"""
joints = np.bitwise_and(vertical, horizontal)
tables = {}
for c in contours:
x, y, w, h = c
roi = joints[y : y + h, x : x + w]
try:
__, jc, __ = cv2.findContours(
roi, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_SIMPLE)
except ValueError:
jc, __ = cv2.findContours(
roi, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_SIMPLE)
if len(jc) <= 4: # remove contours with less than 4 joints
continue
joint_coords = []
for j in jc:
jx, jy, jw, jh = cv2.boundingRect(j)
c1, c2 = x + (2 * jx + jw) // 2, y + (2 * jy + jh) // 2
joint_coords.append((c1, c2))
tables[(x, y + h, x + w, y)] = joint_coords
return tables
def remove_lines(threshold, line_size_scaling=15):
"""
Parameters
----------
threshold
line_size_scaling
Returns
-------
"""
size = threshold.shape[0] // line_size_scaling
vertical_erode_el = cv2.getStructuringElement(cv2.MORPH_RECT, (1, size))
horizontal_erode_el = cv2.getStructuringElement(cv2.MORPH_RECT, (size, 1))
dilate_el = cv2.getStructuringElement(cv2.MORPH_RECT, (10, 10))
vertical = cv2.erode(threshold, vertical_erode_el)
vertical = cv2.dilate(vertical, dilate_el)
horizontal = cv2.erode(threshold, horizontal_erode_el)
horizontal = cv2.dilate(horizontal, dilate_el)
threshold = np.bitwise_and(threshold, np.invert(vertical))
threshold = np.bitwise_and(threshold, np.invert(horizontal))
return threshold
def find_cuts(threshold, char_size_scaling=200):
"""
Parameters
----------
threshold
char_size_scaling
Returns
-------
"""
size = threshold.shape[0] // char_size_scaling
char_el = cv2.getStructuringElement(cv2.MORPH_RECT, (1, size))
threshold = cv2.erode(threshold, char_el)
threshold = cv2.dilate(threshold, char_el)
try:
__, contours, __ = cv2.findContours(threshold, cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
except ValueError:
contours, __ = cv2.findContours(threshold, cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
contours = [cv2.boundingRect(c) for c in contours]
y_cuts = [(c[1], c[1] + c[3]) for c in contours]
y_cuts = list(merge_tuples(sorted(y_cuts)))
y_cuts = [(y_cuts[i][0] + y_cuts[i - 1][1]) // 2 for i in range(1, len(y_cuts))]
return sorted(y_cuts, reverse=True)