435 lines
16 KiB
Python
435 lines
16 KiB
Python
# -*- coding: utf-8 -*-
|
|
|
|
import os
|
|
import sys
|
|
import copy
|
|
import locale
|
|
import logging
|
|
import warnings
|
|
|
|
import numpy as np
|
|
import pandas as pd
|
|
|
|
from .base import BaseParser
|
|
from ..core import Table
|
|
from ..utils import (
|
|
scale_image,
|
|
scale_pdf,
|
|
segments_in_bbox,
|
|
text_in_bbox,
|
|
merge_close_lines,
|
|
get_table_index,
|
|
compute_accuracy,
|
|
compute_whitespace,
|
|
)
|
|
from ..image_processing import (
|
|
adaptive_threshold,
|
|
find_lines,
|
|
find_contours,
|
|
find_joints,
|
|
)
|
|
from ..backends.image_conversion import BACKENDS
|
|
|
|
|
|
logger = logging.getLogger("camelot")
|
|
|
|
|
|
class Lattice(BaseParser):
|
|
"""Lattice method of parsing looks for lines between text
|
|
to parse the table.
|
|
|
|
Parameters
|
|
----------
|
|
table_regions : list, optional (default: None)
|
|
List of page regions that may contain tables of the form x1,y1,x2,y2
|
|
where (x1, y1) -> left-top and (x2, y2) -> right-bottom
|
|
in PDF coordinate space.
|
|
table_areas : list, optional (default: None)
|
|
List of table area strings of the form x1,y1,x2,y2
|
|
where (x1, y1) -> left-top and (x2, y2) -> right-bottom
|
|
in PDF coordinate space.
|
|
process_background : bool, optional (default: False)
|
|
Process background lines.
|
|
line_scale : int, optional (default: 15)
|
|
Line size scaling factor. The larger the value the smaller
|
|
the detected lines. Making it very large will lead to text
|
|
being detected as lines.
|
|
copy_text : list, optional (default: None)
|
|
{'h', 'v'}
|
|
Direction in which text in a spanning cell will be copied
|
|
over.
|
|
shift_text : list, optional (default: ['l', 't'])
|
|
{'l', 'r', 't', 'b'}
|
|
Direction in which text in a spanning cell will flow.
|
|
split_text : bool, optional (default: False)
|
|
Split text that spans across multiple cells.
|
|
flag_size : bool, optional (default: False)
|
|
Flag text based on font size. Useful to detect
|
|
super/subscripts. Adds <s></s> around flagged text.
|
|
strip_text : str, optional (default: '')
|
|
Characters that should be stripped from a string before
|
|
assigning it to a cell.
|
|
line_tol : int, optional (default: 2)
|
|
Tolerance parameter used to merge close vertical and horizontal
|
|
lines.
|
|
joint_tol : int, optional (default: 2)
|
|
Tolerance parameter used to decide whether the detected lines
|
|
and points lie close to each other.
|
|
threshold_blocksize : int, optional (default: 15)
|
|
Size of a pixel neighborhood that is used to calculate a
|
|
threshold value for the pixel: 3, 5, 7, and so on.
|
|
|
|
For more information, refer `OpenCV's adaptiveThreshold <https://docs.opencv.org/2.4/modules/imgproc/doc/miscellaneous_transformations.html#adaptivethreshold>`_.
|
|
threshold_constant : int, optional (default: -2)
|
|
Constant subtracted from the mean or weighted mean.
|
|
Normally, it is positive but may be zero or negative as well.
|
|
|
|
For more information, refer `OpenCV's adaptiveThreshold <https://docs.opencv.org/2.4/modules/imgproc/doc/miscellaneous_transformations.html#adaptivethreshold>`_.
|
|
iterations : int, optional (default: 0)
|
|
Number of times for erosion/dilation is applied.
|
|
|
|
For more information, refer `OpenCV's dilate <https://docs.opencv.org/2.4/modules/imgproc/doc/filtering.html#dilate>`_.
|
|
resolution : int, optional (default: 300)
|
|
Resolution used for PDF to PNG conversion.
|
|
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
table_regions=None,
|
|
table_areas=None,
|
|
process_background=False,
|
|
line_scale=15,
|
|
copy_text=None,
|
|
shift_text=["l", "t"],
|
|
split_text=False,
|
|
flag_size=False,
|
|
strip_text="",
|
|
line_tol=2,
|
|
joint_tol=2,
|
|
threshold_blocksize=15,
|
|
threshold_constant=-2,
|
|
iterations=0,
|
|
resolution=300,
|
|
backend="ghostscript",
|
|
**kwargs,
|
|
):
|
|
self.table_regions = table_regions
|
|
self.table_areas = table_areas
|
|
self.process_background = process_background
|
|
self.line_scale = line_scale
|
|
self.copy_text = copy_text
|
|
self.shift_text = shift_text
|
|
self.split_text = split_text
|
|
self.flag_size = flag_size
|
|
self.strip_text = strip_text
|
|
self.line_tol = line_tol
|
|
self.joint_tol = joint_tol
|
|
self.threshold_blocksize = threshold_blocksize
|
|
self.threshold_constant = threshold_constant
|
|
self.iterations = iterations
|
|
self.resolution = resolution
|
|
self.backend = Lattice._get_backend(backend)
|
|
|
|
@staticmethod
|
|
def _get_backend(backend):
|
|
def implements_convert():
|
|
methods = [
|
|
method for method in dir(backend) if method.startswith("__") is False
|
|
]
|
|
return "convert" in methods
|
|
|
|
if isinstance(backend, str):
|
|
if backend in BACKENDS.keys():
|
|
if backend == "ghostscript":
|
|
raise DeprecationWarning(
|
|
"'ghostscript' will be replaced by 'poppler' as the default image conversion"
|
|
" backend in v0.12.0. You can try out 'poppler' with backend='poppler'."
|
|
)
|
|
|
|
return BACKENDS[backend]()
|
|
else:
|
|
raise NotImplementedError(
|
|
f"Unknown backend '{backend}' specified. Please use either 'poppler' or 'ghostscript'."
|
|
)
|
|
else:
|
|
if not implements_convert():
|
|
raise NotImplementedError(
|
|
f"'{backend}' must implement a 'convert' method"
|
|
)
|
|
|
|
return backend
|
|
|
|
@staticmethod
|
|
def _reduce_index(t, idx, shift_text):
|
|
"""Reduces index of a text object if it lies within a spanning
|
|
cell.
|
|
|
|
Parameters
|
|
----------
|
|
table : camelot.core.Table
|
|
idx : list
|
|
List of tuples of the form (r_idx, c_idx, text).
|
|
shift_text : list
|
|
{'l', 'r', 't', 'b'}
|
|
Select one or more strings from above and pass them as a
|
|
list to specify where the text in a spanning cell should
|
|
flow.
|
|
|
|
Returns
|
|
-------
|
|
indices : list
|
|
List of tuples of the form (r_idx, c_idx, text) where
|
|
r_idx and c_idx are new row and column indices for text.
|
|
|
|
"""
|
|
indices = []
|
|
for r_idx, c_idx, text in idx:
|
|
for d in shift_text:
|
|
if d == "l":
|
|
if t.cells[r_idx][c_idx].hspan:
|
|
while not t.cells[r_idx][c_idx].left:
|
|
c_idx -= 1
|
|
if d == "r":
|
|
if t.cells[r_idx][c_idx].hspan:
|
|
while not t.cells[r_idx][c_idx].right:
|
|
c_idx += 1
|
|
if d == "t":
|
|
if t.cells[r_idx][c_idx].vspan:
|
|
while not t.cells[r_idx][c_idx].top:
|
|
r_idx -= 1
|
|
if d == "b":
|
|
if t.cells[r_idx][c_idx].vspan:
|
|
while not t.cells[r_idx][c_idx].bottom:
|
|
r_idx += 1
|
|
indices.append((r_idx, c_idx, text))
|
|
return indices
|
|
|
|
@staticmethod
|
|
def _copy_spanning_text(t, copy_text=None):
|
|
"""Copies over text in empty spanning cells.
|
|
|
|
Parameters
|
|
----------
|
|
t : camelot.core.Table
|
|
copy_text : list, optional (default: None)
|
|
{'h', 'v'}
|
|
Select one or more strings from above and pass them as a list
|
|
to specify the direction in which text should be copied over
|
|
when a cell spans multiple rows or columns.
|
|
|
|
Returns
|
|
-------
|
|
t : camelot.core.Table
|
|
|
|
"""
|
|
for f in copy_text:
|
|
if f == "h":
|
|
for i in range(len(t.cells)):
|
|
for j in range(len(t.cells[i])):
|
|
if t.cells[i][j].text.strip() == "":
|
|
if t.cells[i][j].hspan and not t.cells[i][j].left:
|
|
t.cells[i][j].text = t.cells[i][j - 1].text
|
|
elif f == "v":
|
|
for i in range(len(t.cells)):
|
|
for j in range(len(t.cells[i])):
|
|
if t.cells[i][j].text.strip() == "":
|
|
if t.cells[i][j].vspan and not t.cells[i][j].top:
|
|
t.cells[i][j].text = t.cells[i - 1][j].text
|
|
return t
|
|
|
|
def _generate_table_bbox(self):
|
|
def scale_areas(areas):
|
|
scaled_areas = []
|
|
for area in areas:
|
|
x1, y1, x2, y2 = area.split(",")
|
|
x1 = float(x1)
|
|
y1 = float(y1)
|
|
x2 = float(x2)
|
|
y2 = float(y2)
|
|
x1, y1, x2, y2 = scale_pdf((x1, y1, x2, y2), image_scalers)
|
|
scaled_areas.append((x1, y1, abs(x2 - x1), abs(y2 - y1)))
|
|
return scaled_areas
|
|
|
|
self.image, self.threshold = adaptive_threshold(
|
|
self.imagename,
|
|
process_background=self.process_background,
|
|
blocksize=self.threshold_blocksize,
|
|
c=self.threshold_constant,
|
|
)
|
|
|
|
image_width = self.image.shape[1]
|
|
image_height = self.image.shape[0]
|
|
image_width_scaler = image_width / float(self.pdf_width)
|
|
image_height_scaler = image_height / float(self.pdf_height)
|
|
pdf_width_scaler = self.pdf_width / float(image_width)
|
|
pdf_height_scaler = self.pdf_height / float(image_height)
|
|
image_scalers = (image_width_scaler, image_height_scaler, self.pdf_height)
|
|
pdf_scalers = (pdf_width_scaler, pdf_height_scaler, image_height)
|
|
|
|
if self.table_areas is None:
|
|
regions = None
|
|
if self.table_regions is not None:
|
|
regions = scale_areas(self.table_regions)
|
|
|
|
vertical_mask, vertical_segments = find_lines(
|
|
self.threshold,
|
|
regions=regions,
|
|
direction="vertical",
|
|
line_scale=self.line_scale,
|
|
iterations=self.iterations,
|
|
)
|
|
horizontal_mask, horizontal_segments = find_lines(
|
|
self.threshold,
|
|
regions=regions,
|
|
direction="horizontal",
|
|
line_scale=self.line_scale,
|
|
iterations=self.iterations,
|
|
)
|
|
|
|
contours = find_contours(vertical_mask, horizontal_mask)
|
|
table_bbox = find_joints(contours, vertical_mask, horizontal_mask)
|
|
else:
|
|
vertical_mask, vertical_segments = find_lines(
|
|
self.threshold,
|
|
direction="vertical",
|
|
line_scale=self.line_scale,
|
|
iterations=self.iterations,
|
|
)
|
|
horizontal_mask, horizontal_segments = find_lines(
|
|
self.threshold,
|
|
direction="horizontal",
|
|
line_scale=self.line_scale,
|
|
iterations=self.iterations,
|
|
)
|
|
|
|
areas = scale_areas(self.table_areas)
|
|
table_bbox = find_joints(areas, vertical_mask, horizontal_mask)
|
|
|
|
self.table_bbox_unscaled = copy.deepcopy(table_bbox)
|
|
|
|
self.table_bbox, self.vertical_segments, self.horizontal_segments = scale_image(
|
|
table_bbox, vertical_segments, horizontal_segments, pdf_scalers
|
|
)
|
|
|
|
def _generate_columns_and_rows(self, table_idx, tk):
|
|
# select elements which lie within table_bbox
|
|
t_bbox = {}
|
|
v_s, h_s = segments_in_bbox(
|
|
tk, self.vertical_segments, self.horizontal_segments
|
|
)
|
|
t_bbox["horizontal"] = text_in_bbox(tk, self.horizontal_text)
|
|
t_bbox["vertical"] = text_in_bbox(tk, self.vertical_text)
|
|
|
|
t_bbox["horizontal"].sort(key=lambda x: (-x.y0, x.x0))
|
|
t_bbox["vertical"].sort(key=lambda x: (x.x0, -x.y0))
|
|
|
|
self.t_bbox = t_bbox
|
|
|
|
cols, rows = zip(*self.table_bbox[tk])
|
|
cols, rows = list(cols), list(rows)
|
|
cols.extend([tk[0], tk[2]])
|
|
rows.extend([tk[1], tk[3]])
|
|
# sort horizontal and vertical segments
|
|
cols = merge_close_lines(sorted(cols), line_tol=self.line_tol)
|
|
rows = merge_close_lines(sorted(rows, reverse=True), line_tol=self.line_tol)
|
|
# make grid using x and y coord of shortlisted rows and cols
|
|
cols = [(cols[i], cols[i + 1]) for i in range(0, len(cols) - 1)]
|
|
rows = [(rows[i], rows[i + 1]) for i in range(0, len(rows) - 1)]
|
|
|
|
return cols, rows, v_s, h_s
|
|
|
|
def _generate_table(self, table_idx, cols, rows, **kwargs):
|
|
v_s = kwargs.get("v_s")
|
|
h_s = kwargs.get("h_s")
|
|
if v_s is None or h_s is None:
|
|
raise ValueError("No segments found on {}".format(self.rootname))
|
|
|
|
table = Table(cols, rows)
|
|
# set table edges to True using ver+hor lines
|
|
table = table.set_edges(v_s, h_s, joint_tol=self.joint_tol)
|
|
# set table border edges to True
|
|
table = table.set_border()
|
|
# set spanning cells to True
|
|
table = table.set_span()
|
|
|
|
pos_errors = []
|
|
# TODO: have a single list in place of two directional ones?
|
|
# sorted on x-coordinate based on reading order i.e. LTR or RTL
|
|
for direction in ["vertical", "horizontal"]:
|
|
for t in self.t_bbox[direction]:
|
|
indices, error = get_table_index(
|
|
table,
|
|
t,
|
|
direction,
|
|
split_text=self.split_text,
|
|
flag_size=self.flag_size,
|
|
strip_text=self.strip_text,
|
|
)
|
|
if indices[:2] != (-1, -1):
|
|
pos_errors.append(error)
|
|
indices = Lattice._reduce_index(
|
|
table, indices, shift_text=self.shift_text
|
|
)
|
|
for r_idx, c_idx, text in indices:
|
|
table.cells[r_idx][c_idx].text = text
|
|
accuracy = compute_accuracy([[100, pos_errors]])
|
|
|
|
if self.copy_text is not None:
|
|
table = Lattice._copy_spanning_text(table, copy_text=self.copy_text)
|
|
|
|
data = table.data
|
|
table.df = pd.DataFrame(data)
|
|
table.shape = table.df.shape
|
|
|
|
whitespace = compute_whitespace(data)
|
|
table.flavor = "lattice"
|
|
table.accuracy = accuracy
|
|
table.whitespace = whitespace
|
|
table.order = table_idx + 1
|
|
table.page = int(os.path.basename(self.rootname).replace("page-", ""))
|
|
|
|
# for plotting
|
|
_text = []
|
|
_text.extend([(t.x0, t.y0, t.x1, t.y1) for t in self.horizontal_text])
|
|
_text.extend([(t.x0, t.y0, t.x1, t.y1) for t in self.vertical_text])
|
|
table._text = _text
|
|
table._image = (self.image, self.table_bbox_unscaled)
|
|
table._segments = (self.vertical_segments, self.horizontal_segments)
|
|
table._textedges = None
|
|
|
|
return table
|
|
|
|
def extract_tables(self, filename, suppress_stdout=False, layout_kwargs={}):
|
|
self._generate_layout(filename, layout_kwargs)
|
|
if not suppress_stdout:
|
|
logger.info("Processing {}".format(os.path.basename(self.rootname)))
|
|
|
|
if not self.horizontal_text:
|
|
if self.images:
|
|
warnings.warn(
|
|
"{} is image-based, camelot only works on"
|
|
" text-based pages.".format(os.path.basename(self.rootname))
|
|
)
|
|
else:
|
|
warnings.warn(
|
|
"No tables found on {}".format(os.path.basename(self.rootname))
|
|
)
|
|
return []
|
|
|
|
self.backend.convert(self.filename, self.imagename)
|
|
|
|
self._generate_table_bbox()
|
|
|
|
_tables = []
|
|
# sort tables based on y-coord
|
|
for table_idx, tk in enumerate(
|
|
sorted(self.table_bbox.keys(), key=lambda x: x[1], reverse=True)
|
|
):
|
|
cols, rows, v_s, h_s = self._generate_columns_and_rows(table_idx, tk)
|
|
table = self._generate_table(table_idx, cols, rows, v_s=v_s, h_s=h_s)
|
|
table._bbox = tk
|
|
_tables.append(table)
|
|
|
|
return _tables
|