Make code PEP8 compliant
parent
f6869a9af4
commit
b87d2350dc
68
README.md
68
README.md
|
|
@ -1,30 +1,70 @@
|
|||
Camelot
|
||||
-------
|
||||
|
||||
usage: python2 camelot.py [options] pdf_file
|
||||
Description: Parse tables from pdfs!
|
||||
|
||||
Parse yo pdf!
|
||||
Dependencies
|
||||
|
||||
Install
|
||||
|
||||
Usage: python2 camelot.py [options] file
|
||||
|
||||
positional arguments:
|
||||
|
||||
file
|
||||
|
||||
optional arguments:
|
||||
-h, --help show this help message and exit
|
||||
|
||||
-p PAGES [PAGES ...] Specify the page numbers and/or page ranges to be
|
||||
parsed. Example: -p="1 3-5 9", -p="all" (default:
|
||||
-p="1")
|
||||
-h, --help
|
||||
|
||||
-f FORMAT Output format (csv/xlsx). Example: -f="xlsx" (default:
|
||||
-f="csv")
|
||||
show this help message and exit
|
||||
|
||||
-spreadsheet Extract data stored in pdfs with ruling lines.
|
||||
(default: False)
|
||||
-p, --pages PAGES [PAGES ...]
|
||||
|
||||
-F ORIENTATION Fill the values in empty cells. Example: -F="h",
|
||||
-F="v", -F="hv" (default: None)
|
||||
Specify the page numbers and/or page ranges to be
|
||||
parsed. Example: -p="1 3-5 9", -p="all" (default: 1)
|
||||
|
||||
-s [SCALE] Scaling factor. Large scaling factor leads to smaller
|
||||
-f, --format FORMAT
|
||||
|
||||
Output format (csv/xlsx). Example: -f="xlsx" (default: csv)
|
||||
|
||||
-m, --spreadsheet
|
||||
|
||||
Extract tables with ruling lines. (default: False)
|
||||
|
||||
-F, --fill FILL
|
||||
|
||||
Fill the values in empty cells horizontally(h) and/or
|
||||
vertically(v). Example: -F="h", -F="v", -F="hv" (default: None)
|
||||
|
||||
-s, --scale [SCALE]
|
||||
|
||||
Scaling factor. Large scaling factor leads to smaller
|
||||
lines being detected. (default: 15)
|
||||
|
||||
Under construction...
|
||||
-j, --jtol [JTOL]
|
||||
|
||||
Tolerance to account for when comparing joint and line
|
||||
coordinates. (default: 2)
|
||||
|
||||
-M, --mtol [MTOL]
|
||||
|
||||
Tolerance to account for when merging lines which are
|
||||
very close. (default: 2)
|
||||
|
||||
-i, --invert
|
||||
|
||||
Make sure lines are in foreground. (default: False)
|
||||
|
||||
-d, --debug DEBUG
|
||||
|
||||
Debug by visualizing contours, lines, joints, tables.
|
||||
Example: --debug="contours"
|
||||
|
||||
-o, --output OUTPUT
|
||||
|
||||
Specify output directory.
|
||||
|
||||
Development: Code, Contributing, Tests
|
||||
|
||||
License
|
||||
|
|
|
|||
57
basic.py
57
basic.py
|
|
@ -4,6 +4,7 @@ import numpy as np
|
|||
|
||||
from pdf import get_pdf_info
|
||||
|
||||
|
||||
def overlap(l):
|
||||
merged = []
|
||||
for higher in l:
|
||||
|
|
@ -11,7 +12,7 @@ def overlap(l):
|
|||
merged.append(higher)
|
||||
else:
|
||||
lower = merged[-1]
|
||||
if higher[0] >= lower[0] and higher[1] <= lower[1]:
|
||||
if higher[0] <= lower[1]:
|
||||
upper_bound = max(lower[1], higher[1])
|
||||
lower_bound = min(lower[0], higher[0])
|
||||
merged[-1] = (lower_bound, upper_bound)
|
||||
|
|
@ -19,40 +20,60 @@ def overlap(l):
|
|||
merged.append(higher)
|
||||
return merged
|
||||
|
||||
|
||||
def get_row_idx(t, rows):
|
||||
for r in range(len(rows)):
|
||||
if t.y1 <= rows[r][0] and t.y0 >= rows[r][1]:
|
||||
return r
|
||||
|
||||
|
||||
def get_column_idx(t, columns):
|
||||
for c in range(len(columns)):
|
||||
if t.x0 >= columns[c][0] and t.x1 <= columns[c][1]:
|
||||
return c
|
||||
|
||||
|
||||
def basic(pdf_dir, filename):
|
||||
print "working on", filename
|
||||
text, _, _ = get_pdf_info(os.path.join(pdf_dir, filename), 'basic')
|
||||
rows, columns = [], []
|
||||
text.sort(key=lambda x: (-x.y0, x.x0))
|
||||
y_last = 0
|
||||
data = []
|
||||
temp = []
|
||||
elements = []
|
||||
for t in text:
|
||||
rows.append((t.y1, t.y0))
|
||||
columns.append((t.x0, t.x1))
|
||||
rows = list(set(rows))
|
||||
rows = sorted(rows, reverse=True)
|
||||
columns = list(set(columns))
|
||||
columns = sorted(columns)
|
||||
columns = overlap(columns)
|
||||
table = [['' for c in columns] for r in rows]
|
||||
for t in text:
|
||||
r_idx = get_row_idx(t, rows)
|
||||
c_idx = get_column_idx(t, columns)
|
||||
if None in [r_idx, c_idx]:
|
||||
print t
|
||||
# is checking for upright necessary?
|
||||
# if t.get_text().strip() and all([obj.upright for obj in t._objs if
|
||||
# type(obj) is LTChar]):
|
||||
if t.get_text().strip():
|
||||
if not np.isclose(y_last, t.y0, atol=2):
|
||||
y_last = t.y0
|
||||
elements.append(len(temp))
|
||||
data.append(temp)
|
||||
temp = []
|
||||
temp.append(t)
|
||||
# a table can't have just 1 column, can it?
|
||||
elements = filter(lambda x: x != 1, elements)
|
||||
# mode = int(sys.argv[2]) if sys.argv[2] else max(set(elements), key=elements.count)
|
||||
mode = max(set(elements), key=elements.count)
|
||||
columns = [(t.x0, t.x1) for d in data for t in d if len(d) == mode]
|
||||
columns = overlap(sorted(columns))
|
||||
columns = [(c[0] + c[1]) / 2.0 for c in columns]
|
||||
|
||||
output = [['' for c in columns] for d in data]
|
||||
for row, d in enumerate(data):
|
||||
for t in d:
|
||||
cog = (t.x0 + t.x1) / 2.0
|
||||
diff = [(i, abs(cog - c)) for i, c in enumerate(columns)]
|
||||
idx = min(diff, key=lambda x: x[1])
|
||||
if output[row][idx[0]]:
|
||||
output[row][idx[0]] += ' ' + t.get_text().strip()
|
||||
else:
|
||||
table[r_idx][c_idx] = t.get_text().strip('\n')
|
||||
output[row][idx[0]] = t.get_text().strip()
|
||||
|
||||
csvname = filename.split('.')[0] + '.csv'
|
||||
csvpath = os.path.join(pdf_dir, csvname)
|
||||
with open(csvpath, 'w') as outfile:
|
||||
writer = csv.writer(outfile, quoting=csv.QUOTE_ALL)
|
||||
for cell in table:
|
||||
writer.writerow([ce for ce in cell])
|
||||
for row in output:
|
||||
writer.writerow([cell.encode('utf-8') for cell in row])
|
||||
|
|
|
|||
64
camelot.py
64
camelot.py
|
|
@ -12,10 +12,12 @@ from spreadsheet import spreadsheet
|
|||
|
||||
pno = re.compile(r'\d+')
|
||||
|
||||
|
||||
def mkdir(directory):
|
||||
if not os.path.isdir(directory):
|
||||
os.makedirs(directory)
|
||||
|
||||
|
||||
def filesort(filename):
|
||||
filename = filename.split('/')[-1]
|
||||
num = pno.findall(filename)
|
||||
|
|
@ -28,12 +30,28 @@ start_time = time.time()
|
|||
CAMELOT_DIR = '.camelot/'
|
||||
mkdir(CAMELOT_DIR)
|
||||
|
||||
parser = argparse.ArgumentParser(description='Parse yo pdf!', usage='python2 camelot.py [options] pdf_file')
|
||||
parser.add_argument('-p', nargs='+', action='store', dest='pages', help='Specify the page numbers and/or page ranges to be parsed. Example: -p="1 3-5 9", -p="all" (default: -p="1")')
|
||||
parser.add_argument('-f', nargs=1, action='store', dest='format', help='Output format (csv/xlsx). Example: -f="xlsx" (default: -f="csv")', default=["csv"])
|
||||
parser.add_argument('-spreadsheet', action='store_true', dest='spreadsheet', help='Extract data stored in pdfs with ruling lines. (default: False)')
|
||||
parser.add_argument('-F', action='store', dest='orientation', help='Fill the values in empty cells. Example: -F="h", -F="v", -F="hv" (default: None)', default=None)
|
||||
parser.add_argument('-s', nargs='?', action='store', dest='scale', help='Scaling factor. Large scaling factor leads to smaller lines being detected. (default: 15)', default=15, type=int)
|
||||
parser = argparse.ArgumentParser(
|
||||
description='Parse tables from pdfs!', usage='python2 camelot.py [options] file')
|
||||
parser.add_argument('-p', '--pages', nargs='+', action='store', dest='pages',
|
||||
help='Specify the page numbers and/or page ranges to be parsed. Example: -p="1 3-5 9", -p="all" (default: 1)')
|
||||
parser.add_argument('-f', '--format', nargs=1, action='store', dest='format',
|
||||
help='Output format (csv/xlsx). Example: -f="xlsx" (default: csv)', default=["csv"])
|
||||
parser.add_argument('-m', '--spreadsheet', action='store_true', dest='spreadsheet',
|
||||
help='Extract tables with ruling lines. (default: False)')
|
||||
parser.add_argument('-F', '--fill', action='store', dest='fill',
|
||||
help='Fill the values in empty cells horizontally(h) and/or vertically(v). Example: -F="h", -F="v", -F="hv" (default: None)', default=None)
|
||||
parser.add_argument('-s', '--scale', nargs='?', action='store', dest='scale',
|
||||
help='Scaling factor. Large scaling factor leads to smaller lines being detected. (default: 15)', default=15, type=int)
|
||||
parser.add_argument('-j', '--jtol', nargs='?', action='store',
|
||||
dest='jtol', help='Tolerance to account for when comparing joint and line coordinates. (default: 2)', default=2, type=int)
|
||||
parser.add_argument('-M', '--mtol', nargs='?', action='store',
|
||||
dest='mtol', help='Tolerance to account for when merging lines which are very close. (default: 2)', default=2, type=int)
|
||||
parser.add_argument('-i', '--invert', action='store_true', dest='invert',
|
||||
help='Make sure lines are in foreground. (default: False)')
|
||||
parser.add_argument('-d', '--debug', nargs=1, action='store', dest='debug',
|
||||
help='Debug by visualizing contours, lines, joints, tables. Example: --debug="contours"')
|
||||
parser.add_argument('-o', '--output', nargs=1, action='store', dest='output',
|
||||
help='Specify output directory.')
|
||||
parser.add_argument('file', nargs=1)
|
||||
|
||||
result = parser.parse_args()
|
||||
|
|
@ -54,28 +72,36 @@ else:
|
|||
p = ['1']
|
||||
p = sorted(set(p))
|
||||
|
||||
s = result.spreadsheet
|
||||
|
||||
pdf_dir = os.path.join(CAMELOT_DIR, os.urandom(16).encode('hex'))
|
||||
mkdir(pdf_dir)
|
||||
filename = result.file[0].split('/')[-1]
|
||||
logging.basicConfig(filename=os.path.join(pdf_dir, filename.split('.')[0] + '.log'), filemode='w', level=logging.DEBUG)
|
||||
# pdf_dir = os.path.join(CAMELOT_DIR, os.urandom(16).encode('hex'))
|
||||
pdf_dir = os.path.join(CAMELOT_DIR, filename.split('.')[0])
|
||||
mkdir(pdf_dir)
|
||||
logging.basicConfig(filename=os.path.join(pdf_dir, filename.split('.')[
|
||||
0] + '.log'), filemode='w', level=logging.DEBUG)
|
||||
|
||||
shutil.copy(result.file[0], os.path.join(pdf_dir, filename))
|
||||
print "separating pdf into pages"
|
||||
print
|
||||
if p == ['all']:
|
||||
subprocess.call(['pdfseparate', os.path.join(pdf_dir, filename), os.path.join(pdf_dir, 'pg-%d.pdf')])
|
||||
subprocess.call(['pdfseparate', os.path.join(
|
||||
pdf_dir, filename), os.path.join(pdf_dir, 'pg-%d.pdf')])
|
||||
else:
|
||||
for page in p:
|
||||
subprocess.call(['pdfseparate', '-f', page, '-l', page, os.path.join(pdf_dir, filename), os.path.join(pdf_dir, 'pg-' + page + '.pdf')])
|
||||
subprocess.call(['pdfseparate', '-f', page, '-l', page, os.path.join(
|
||||
pdf_dir, filename), os.path.join(pdf_dir, 'pg-' + page + '.pdf')])
|
||||
|
||||
if s:
|
||||
if result.spreadsheet:
|
||||
print "using the spreadsheet method"
|
||||
for g in sorted(glob.glob(os.path.join(pdf_dir, 'pg-*.pdf'))):
|
||||
print "converting", g.split('/')[-1], "to image"
|
||||
os.system(' '.join(['convert', '-density', '300', g, '-depth', '8', g[:-4] + '.png']))
|
||||
spreadsheet(pdf_dir, g.split('/')[-1], result.orientation, result.scale)
|
||||
os.system(' '.join(['convert', '-density', '300',
|
||||
g, '-depth', '8', g[:-4] + '.png']))
|
||||
try:
|
||||
spreadsheet(pdf_dir, g.split('/')[-1], result.fill, result.scale,
|
||||
result.jtol, result.mtol, result.invert, result.debug)
|
||||
except:
|
||||
logging.error("Couldn't parse " + g.split('/')[-1])
|
||||
print "Couldn't parse", g.split('/')[-1]
|
||||
else:
|
||||
print "using the basic method"
|
||||
for g in sorted(glob.glob(os.path.join(pdf_dir, 'pg-*.pdf'))):
|
||||
|
|
@ -90,7 +116,8 @@ if result.format == ['xlsx']:
|
|||
print "adding", c.split('/')[-1], "to excel file"
|
||||
with open(c, 'r') as csvfile:
|
||||
reader = csv.reader(csvfile)
|
||||
data.update({c.split('/')[-1].split('.')[0]: [row for row in reader]})
|
||||
data.update({c.split('/')[-1].split('.')
|
||||
[0]: [row for row in reader]})
|
||||
xlsxname = filename.split('.')[0] + '.xlsx'
|
||||
xlsxpath = os.path.join(pdf_dir, xlsxname)
|
||||
save_data(xlsxpath, data)
|
||||
|
|
@ -98,4 +125,5 @@ if result.format == ['xlsx']:
|
|||
print "saved as", xlsxname
|
||||
|
||||
print "finished in", time.time() - start_time, "seconds"
|
||||
logging.info("Time taken for " + filename + ": " + str(time.time() - start_time) + " seconds")
|
||||
logging.info("Time taken for " + filename + ": " +
|
||||
str(time.time() - start_time) + " seconds")
|
||||
|
|
|
|||
1
cell.py
1
cell.py
|
|
@ -1,4 +1,5 @@
|
|||
class Cell:
|
||||
|
||||
def __init__(self, x1, y1, x2, y2):
|
||||
self.lb = (x1, y1)
|
||||
self.lt = (x1, y2)
|
||||
|
|
|
|||
|
|
@ -1,20 +1,20 @@
|
|||
import cv2
|
||||
import numpy as np
|
||||
|
||||
def transform(x, y, img_x, img_y, pdf_x, pdf_y):
|
||||
x *= pdf_x / float(img_x)
|
||||
y = abs(y - img_y)
|
||||
y *= pdf_y / float(img_y)
|
||||
return x, y
|
||||
|
||||
# http://answers.opencv.org/question/63847/how-to-extract-tables-from-an-image/
|
||||
def morph(imagename, p_x, p_y, s):
|
||||
def morph_transform(imagename, s, invert):
|
||||
# http://answers.opencv.org/question/63847/how-to-extract-tables-from-an-image/
|
||||
img = cv2.imread(imagename)
|
||||
img_x, img_y = img.shape[1], img.shape[0]
|
||||
pdf_x, pdf_y = p_x, p_y
|
||||
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
||||
# empirical result taken from http://pequan.lip6.fr/~bereziat/pima/2012/seuillage/sezgin04.pdf
|
||||
threshold = cv2.adaptiveThreshold(np.invert(gray), 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 15, -0.2)
|
||||
# empirical result taken from
|
||||
# http://pequan.lip6.fr/~bereziat/pima/2012/seuillage/sezgin04.pdf
|
||||
if invert:
|
||||
threshold = cv2.adaptiveThreshold(
|
||||
gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 15, -0.2)
|
||||
else:
|
||||
threshold = cv2.adaptiveThreshold(np.invert(
|
||||
gray), 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 15, -0.2)
|
||||
vertical = threshold
|
||||
horizontal = threshold
|
||||
|
||||
|
|
@ -33,41 +33,43 @@ def morph(imagename, p_x, p_y, s):
|
|||
|
||||
mask = vertical + horizontal
|
||||
joints = np.bitwise_and(vertical, horizontal)
|
||||
_, contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
||||
_, contours, _ = cv2.findContours(
|
||||
mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
||||
contours = sorted(contours, key=cv2.contourArea, reverse=True)[:10]
|
||||
|
||||
tables = {}
|
||||
for c in contours:
|
||||
c_poly = cv2.approxPolyDP(c, 3, True)
|
||||
x, y, w, h = cv2.boundingRect(c_poly)
|
||||
# find number of non-zero values in joints using what boundingRect returns
|
||||
roi = joints[y:y+h, x:x+w]
|
||||
_, jc, _ = cv2.findContours(roi, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_SIMPLE)
|
||||
# find number of non-zero values in joints using what boundingRect
|
||||
# returns
|
||||
roi = joints[y:y + h, x:x + w]
|
||||
_, jc, _ = cv2.findContours(
|
||||
roi, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_SIMPLE)
|
||||
if len(jc) <= 4: # remove contours with less than <=4 joints
|
||||
continue
|
||||
joint_coords = []
|
||||
for j in jc:
|
||||
jx, jy, jw, jh = cv2.boundingRect(j)
|
||||
c1, c2 = x + (2*jx + jw) / 2, y + (2*jy + jh) / 2
|
||||
c1, c2 = transform(c1, c2, img_x, img_y, pdf_x, pdf_y)
|
||||
c1, c2 = x + (2 * jx + jw) / 2, y + (2 * jy + jh) / 2
|
||||
joint_coords.append((c1, c2))
|
||||
x1, y1 = transform(x, y, img_x, img_y, pdf_x, pdf_y)
|
||||
x2, y2 = transform(x + w, y + h, img_x, img_y, pdf_x, pdf_y)
|
||||
tables[(x1, y2, x2, y1)] = joint_coords
|
||||
tables[(x, y + h, x + w, y)] = joint_coords
|
||||
|
||||
v_segments, h_segments = [], []
|
||||
_, vcontours, _ = cv2.findContours(vertical, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
||||
_, vcontours, _ = cv2.findContours(
|
||||
vertical, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
||||
for vc in vcontours:
|
||||
x, y, w, h = cv2.boundingRect(vc)
|
||||
x1, y1 = transform(x, y, img_x, img_y, pdf_x, pdf_y)
|
||||
x2, y2 = transform(x + w, y + h, img_x, img_y, pdf_x, pdf_y)
|
||||
x1, x2 = x, x + w
|
||||
y1, y2 = y, y + h
|
||||
v_segments.append(((x1 + x2) / 2, y2, (x1 + x2) / 2, y1))
|
||||
|
||||
_, hcontours, _ = cv2.findContours(horizontal, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
||||
_, hcontours, _ = cv2.findContours(
|
||||
horizontal, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
||||
for hc in hcontours:
|
||||
x, y, w, h = cv2.boundingRect(hc)
|
||||
x1, y1 = transform(x, y, img_x, img_y, pdf_x, pdf_y)
|
||||
x2, y2 = transform(x + w, y + h, img_x, img_y, pdf_x, pdf_y)
|
||||
x1, x2 = x, x + w
|
||||
y1, y2 = y, y + h
|
||||
h_segments.append((x1, (y1 + y2) / 2, x2, (y1 + y2) / 2))
|
||||
|
||||
return tables, v_segments, h_segments
|
||||
32
pdf.py
32
pdf.py
|
|
@ -8,30 +8,36 @@ from pdfminer.pdfdevice import PDFDevice
|
|||
from pdfminer.converter import PDFPageAggregator
|
||||
from pdfminer.layout import LAParams, LTChar, LTTextLineHorizontal
|
||||
|
||||
text = []
|
||||
|
||||
def parse_text_basic(layout):
|
||||
global text
|
||||
def parse_text_basic(layout, t=None):
|
||||
if t is None:
|
||||
t = []
|
||||
try:
|
||||
for obj in layout._objs:
|
||||
if type(obj) is LTTextLineHorizontal:
|
||||
text.append(obj)
|
||||
parse_text_basic(obj)
|
||||
t.append(obj)
|
||||
else:
|
||||
t += parse_text_basic(obj)
|
||||
except AttributeError:
|
||||
pass
|
||||
return t
|
||||
|
||||
def parse_text_spreadsheet(layout):
|
||||
global text
|
||||
|
||||
def parse_text_spreadsheet(layout, t=None):
|
||||
if t is None:
|
||||
t = []
|
||||
try:
|
||||
for obj in layout._objs:
|
||||
if type(obj) is LTChar:
|
||||
text.append(obj)
|
||||
parse_text_spreadsheet(obj)
|
||||
t.append(obj)
|
||||
else:
|
||||
t += parse_text_spreadsheet(obj)
|
||||
except AttributeError:
|
||||
pass
|
||||
return t
|
||||
|
||||
|
||||
def get_pdf_info(pdfname, method):
|
||||
global text
|
||||
with open(pdfname, 'r') as f:
|
||||
parser = PDFParser(f)
|
||||
document = PDFDocument(parser)
|
||||
|
|
@ -44,11 +50,9 @@ def get_pdf_info(pdfname, method):
|
|||
for page in PDFPage.create_pages(document):
|
||||
interpreter.process_page(page)
|
||||
layout = device.get_result()
|
||||
text = []
|
||||
if method == 'basic':
|
||||
parse_text_basic(layout)
|
||||
text = parse_text_basic(layout)
|
||||
elif method == 'spreadsheet':
|
||||
parse_text_spreadsheet(layout)
|
||||
text = parse_text_spreadsheet(layout)
|
||||
pdf_x, pdf_y = layout.bbox[2], layout.bbox[3]
|
||||
text.sort(key=lambda x: (-x.y0, x.x0))
|
||||
return text, pdf_x, pdf_y
|
||||
222
spreadsheet.py
222
spreadsheet.py
|
|
@ -1,110 +1,145 @@
|
|||
import os
|
||||
import csv
|
||||
import cv2
|
||||
import glob
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
from table import Table
|
||||
from pdf import get_pdf_info
|
||||
from morph_transform import morph
|
||||
from morph_transform import morph_transform
|
||||
from utils import (translate, scale, merge_close_values, get_row_idx,
|
||||
get_column_idx, reduce_index, outline, fill, remove_empty)
|
||||
|
||||
def remove_close_values(ar):
|
||||
ret = []
|
||||
for a in ar:
|
||||
if not ret:
|
||||
ret.append(a)
|
||||
else:
|
||||
temp = ret[-1]
|
||||
if np.isclose(temp, a, atol=2):
|
||||
pass
|
||||
else:
|
||||
ret.append(a)
|
||||
return ret
|
||||
|
||||
def merge_close_values(ar):
|
||||
ret = []
|
||||
for a in ar:
|
||||
if not ret:
|
||||
ret.append(a)
|
||||
else:
|
||||
temp = ret[-1]
|
||||
if np.isclose(temp, a, atol=2):
|
||||
temp = (temp + a) / 2.0
|
||||
ret[-1] = temp
|
||||
else:
|
||||
ret.append(a)
|
||||
return ret
|
||||
|
||||
def get_row_idx(t, rows):
|
||||
for r in range(len(rows)):
|
||||
if abs(t.y0 + t.y1) / 2.0 < rows[r][0] and abs(t.y0 + t.y1) / 2.0 > rows[r][1]:
|
||||
return r
|
||||
|
||||
def get_column_idx(t, columns):
|
||||
for c in range(len(columns)):
|
||||
if abs(t.x0 + t.x1) / 2.0 > columns[c][0] and abs(t.x0 + t.x1) / 2.0 < columns[c][1]:
|
||||
return c
|
||||
|
||||
def reduce_index(t, r_idx, c_idx):
|
||||
if t.cells[r_idx][c_idx].spanning_h:
|
||||
while not t.cells[r_idx][c_idx].left:
|
||||
c_idx -= 1
|
||||
if t.cells[r_idx][c_idx].spanning_v:
|
||||
while not t.cells[r_idx][c_idx].top:
|
||||
r_idx -= 1
|
||||
return r_idx, c_idx
|
||||
|
||||
def fill(t, orientation):
|
||||
if orientation == "h":
|
||||
for i in range(len(t.cells)):
|
||||
for j in range(len(t.cells[i])):
|
||||
if t.cells[i][j].get_text().strip() == '':
|
||||
if t.cells[i][j].spanning_h:
|
||||
t.cells[i][j].add_text(t.cells[i][j - 1].get_text())
|
||||
elif orientation == "v":
|
||||
for i in range(len(t.cells)):
|
||||
for j in range(len(t.cells[i])):
|
||||
if t.cells[i][j].get_text().strip() == '':
|
||||
if t.cells[i][j].spanning_v:
|
||||
t.cells[i][j].add_text(t.cells[i - 1][j].get_text())
|
||||
elif orientation == "hv":
|
||||
for i in range(len(t.cells)):
|
||||
for j in range(len(t.cells[i])):
|
||||
if t.cells[i][j].get_text().strip() == '':
|
||||
if t.cells[i][j].spanning_h:
|
||||
t.cells[i][j].add_text(t.cells[i][j - 1].get_text())
|
||||
elif t.cells[i][j].spanning_v:
|
||||
t.cells[i][j].add_text(t.cells[i - 1][j].get_text())
|
||||
return t
|
||||
|
||||
def spreadsheet(pdf_dir, filename, orientation, scale):
|
||||
def spreadsheet(pdf_dir, filename, fill, s, jtol, mtol, invert, debug):
|
||||
if debug:
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib.patches as patches
|
||||
print "working on", filename
|
||||
imagename = os.path.join(pdf_dir, filename.split('.')[0] + '.png')
|
||||
text, pdf_x, pdf_y = get_pdf_info(os.path.join(pdf_dir, filename), 'spreadsheet')
|
||||
tables, v_segments, h_segments = morph(imagename, pdf_x, pdf_y, scale)
|
||||
img = cv2.imread(imagename)
|
||||
img_x, img_y = img.shape[1], img.shape[0]
|
||||
text, pdf_x, pdf_y = get_pdf_info(
|
||||
os.path.join(pdf_dir, filename), 'spreadsheet')
|
||||
scaling_factor_x = pdf_x / float(img_x)
|
||||
scaling_factor_y = pdf_y / float(img_y)
|
||||
tables, v_segments, h_segments = morph_transform(imagename, s, invert)
|
||||
|
||||
if debug == ["contours"]:
|
||||
for t in tables.keys():
|
||||
cv2.rectangle(img, (t[0], t[1]), (t[2], t[3]), (255, 0, 0), 3)
|
||||
plt.imshow(img)
|
||||
if debug == ["joints"]:
|
||||
x_coord = []
|
||||
y_coord = []
|
||||
for k in tables.keys():
|
||||
for coord in tables[k]:
|
||||
x_coord.append(coord[0])
|
||||
y_coord.append(coord[1])
|
||||
max_x, max_y = max(x_coord), max(y_coord)
|
||||
plt.plot(x_coord, y_coord, 'ro')
|
||||
plt.axis([0, max_x + 100, max_y + 100, 0])
|
||||
plt.imshow(img)
|
||||
|
||||
# detect if vertical
|
||||
num_v = [t for t in text if (not t.upright) and t.get_text().strip()]
|
||||
num_h = [t for t in text if t.upright and t.get_text().strip()]
|
||||
vger = len(num_v) / float(len(num_v) + len(num_h))
|
||||
rotated = ''
|
||||
if vger > 0.8:
|
||||
clockwise = sum(t.matrix[1] < 0 and t.matrix[2] > 0 for t in text)
|
||||
anticlockwise = sum(t.matrix[1] > 0 and t.matrix[2] < 0 for t in text)
|
||||
rotated = 'left' if clockwise < anticlockwise else 'right'
|
||||
|
||||
tables_new = {}
|
||||
for k in tables.keys():
|
||||
x1, y1, x2, y2 = k
|
||||
x1 = scale(x1, scaling_factor_x)
|
||||
y1 = scale(abs(translate(-img_y, y1)), scaling_factor_y)
|
||||
x2 = scale(x2, scaling_factor_x)
|
||||
y2 = scale(abs(translate(-img_y, y2)), scaling_factor_y)
|
||||
j_x, j_y = zip(*tables[k])
|
||||
j_x = [scale(j, scaling_factor_x) for j in j_x]
|
||||
j_y = [scale(abs(translate(-img_y, j)), scaling_factor_y) for j in j_y]
|
||||
joints = zip(j_x, j_y)
|
||||
tables_new[(x1, y1, x2, y2)] = joints
|
||||
|
||||
v_segments_new = []
|
||||
for v in v_segments:
|
||||
x1, x2 = scale(v[0], scaling_factor_x), scale(v[2], scaling_factor_x)
|
||||
y1, y2 = scale(abs(translate(-img_y, v[1])), scaling_factor_y), scale(
|
||||
abs(translate(-img_y, v[3])), scaling_factor_y)
|
||||
v_segments_new.append((x1, y1, x2, y2))
|
||||
|
||||
h_segments_new = []
|
||||
for h in h_segments:
|
||||
x1, x2 = scale(h[0], scaling_factor_x), scale(h[2], scaling_factor_x)
|
||||
y1, y2 = scale(abs(translate(-img_y, h[1])), scaling_factor_y), scale(
|
||||
abs(translate(-img_y, h[3])), scaling_factor_y)
|
||||
h_segments_new.append((x1, y1, x2, y2))
|
||||
|
||||
num_tables = 0
|
||||
for k in sorted(tables.keys(), key=lambda x: x[1], reverse=True): # sort tables based on y-coord
|
||||
# sort tables based on y-coord
|
||||
for k in sorted(tables_new.keys(), key=lambda x: x[1], reverse=True):
|
||||
# find rows and columns that lie in table
|
||||
lb = (k[0], k[1])
|
||||
rt = (k[2], k[3])
|
||||
v_s = [v for v in v_segments if v[1] > lb[1] - 2 and v[3] < rt[1] + 2 and lb[0] - 2 <= v[0] <= rt[0] + 2]
|
||||
h_s = [h for h in h_segments if h[0] > lb[0] - 2 and h[2] < rt[0] + 2 and lb[1] - 2 <= h[1] <= rt[1] + 2]
|
||||
columns, rows = zip(*tables[k])
|
||||
v_s = [v for v in v_segments_new if v[1] > lb[1] - 2 and v[3]
|
||||
< rt[1] + 2 and lb[0] - 2 <= v[0] <= rt[0] + 2]
|
||||
h_s = [h for h in h_segments_new if h[0] > lb[0] - 2 and h[2]
|
||||
< rt[0] + 2 and lb[1] - 2 <= h[1] <= rt[1] + 2]
|
||||
|
||||
if debug == ["lines"]:
|
||||
for v in v_s:
|
||||
plt.plot([v[0], v[2]], [v[1], v[3]])
|
||||
for h in h_s:
|
||||
plt.plot([h[0], h[2]], [h[1], h[3]])
|
||||
|
||||
columns, rows = zip(*tables_new[k])
|
||||
columns, rows = list(columns), list(rows)
|
||||
columns.extend([lb[0], rt[0]])
|
||||
rows.extend([lb[1], rt[1]])
|
||||
# sort horizontal and vertical segments
|
||||
columns = merge_close_values(sorted(list(columns)))
|
||||
rows = merge_close_values(sorted(list(rows), reverse=True))
|
||||
columns = merge_close_values(sorted(columns), mtol)
|
||||
rows = merge_close_values(sorted(rows, reverse=True), mtol)
|
||||
# make grid using x and y coord of shortlisted rows and columns
|
||||
columns = [(columns[i], columns[i + 1]) for i in range(0, len(columns) - 1)]
|
||||
columns = [(columns[i], columns[i + 1])
|
||||
for i in range(0, len(columns) - 1)]
|
||||
rows = [(rows[i], rows[i + 1]) for i in range(0, len(rows) - 1)]
|
||||
|
||||
table = Table(columns, rows)
|
||||
# pass row and column line segments to table method and light up cell edges
|
||||
table = table.set_edges(v_s, h_s)
|
||||
# light up cell edges
|
||||
table = table.set_edges(v_s, h_s, jtol)
|
||||
# table set span method
|
||||
table = table.set_spanning()
|
||||
# TODO
|
||||
table = outline(table)
|
||||
|
||||
if debug == ["tables"]:
|
||||
for i in range(len(table.cells)):
|
||||
for j in range(len(table.cells[i])):
|
||||
if table.cells[i][j].left:
|
||||
plt.plot([table.cells[i][j].lb[0], table.cells[i][j].lt[0]],
|
||||
[table.cells[i][j].lb[1], table.cells[i][j].lt[1]])
|
||||
if table.cells[i][j].right:
|
||||
plt.plot([table.cells[i][j].rb[0], table.cells[i][j].rt[0]],
|
||||
[table.cells[i][j].rb[1], table.cells[i][j].rt[1]])
|
||||
if table.cells[i][j].top:
|
||||
plt.plot([table.cells[i][j].lt[0], table.cells[i][j].rt[0]],
|
||||
[table.cells[i][j].lt[1], table.cells[i][j].rt[1]])
|
||||
if table.cells[i][j].bottom:
|
||||
plt.plot([table.cells[i][j].lb[0], table.cells[i][j].rb[0]],
|
||||
[table.cells[i][j].lb[1], table.cells[i][j].rb[1]])
|
||||
if debug:
|
||||
plt.show()
|
||||
|
||||
# fill text after sorting it
|
||||
if not rotated:
|
||||
text.sort(key=lambda x: (-x.y0, x.x0))
|
||||
elif rotated == 'left':
|
||||
text.sort(key=lambda x: (x.x0, x.y0))
|
||||
elif rotated == 'right':
|
||||
text.sort(key=lambda x: (-x.x0, -x.y0))
|
||||
|
||||
for t in text:
|
||||
r_idx = get_row_idx(t, rows)
|
||||
|
|
@ -112,18 +147,29 @@ def spreadsheet(pdf_dir, filename, orientation, scale):
|
|||
if None in [r_idx, c_idx]:
|
||||
pass
|
||||
else:
|
||||
r_idx, c_idx = reduce_index(table, r_idx, c_idx)
|
||||
r_idx, c_idx = reduce_index(table, rotated, r_idx, c_idx)
|
||||
table.cells[r_idx][c_idx].add_text(t.get_text().strip('\n'))
|
||||
|
||||
if orientation:
|
||||
table = fill(table, orientation)
|
||||
if fill:
|
||||
table = fill(table, fill)
|
||||
|
||||
csvname = filename.split('.')[0] + ('_table_%d' % (num_tables + 1)) + '.csv'
|
||||
data = []
|
||||
for i in range(len(table.cells)):
|
||||
data.append([table.cells[i][j].get_text().strip().encode('utf-8')
|
||||
for j in range(len(table.cells[i]))])
|
||||
if rotated == 'left':
|
||||
data = zip(*data[::-1])
|
||||
elif rotated == 'right':
|
||||
data = zip(*data[::1])
|
||||
data.reverse()
|
||||
data = remove_empty(data)
|
||||
csvname = filename.split(
|
||||
'.')[0] + ('_table_%d' % (num_tables + 1)) + '.csv'
|
||||
csvpath = os.path.join(pdf_dir, csvname)
|
||||
with open(csvpath, 'w') as outfile:
|
||||
writer = csv.writer(outfile, quoting=csv.QUOTE_ALL)
|
||||
for i in range(len(table.cells)):
|
||||
writer.writerow([table.cells[i][j].get_text().strip().encode('utf-8') for j in range(len(table.cells[i]))])
|
||||
for d in data:
|
||||
writer.writerow(d)
|
||||
print "saved as", csvname
|
||||
print
|
||||
num_tables += 1
|
||||
69
table.py
69
table.py
|
|
@ -1,63 +1,62 @@
|
|||
import numpy as np
|
||||
|
||||
from cell import Cell
|
||||
|
||||
|
||||
class Table:
|
||||
|
||||
def __init__(self, columns, rows):
|
||||
self.cells = [[Cell(c[0], r[1], c[1], r[0]) for c in columns] for r in rows]
|
||||
self.cells = [[Cell(c[0], r[1], c[1], r[0])
|
||||
for c in columns] for r in rows]
|
||||
self.columns = columns
|
||||
self.rows = rows
|
||||
|
||||
def set_edges(self, vertical, horizontal):
|
||||
def set_edges(self, vertical, horizontal, jtol):
|
||||
for v in vertical:
|
||||
# find closest x coord
|
||||
# iterate over y coords and find closest points
|
||||
i = [i for i, t in enumerate(self.columns) if np.isclose(v[0], t[0], atol=2)]
|
||||
j = [j for j, t in enumerate(self.rows) if np.isclose(v[3], t[0], atol=2)]
|
||||
k = [k for k, t in enumerate(self.rows) if np.isclose(v[1], t[0], atol=2)]
|
||||
i = [i for i, t in enumerate(self.columns)
|
||||
if np.isclose(v[0], t[0], atol=jtol)]
|
||||
j = [j for j, t in enumerate(self.rows)
|
||||
if np.isclose(v[3], t[0], atol=jtol)]
|
||||
k = [k for k, t in enumerate(self.rows)
|
||||
if np.isclose(v[1], t[0], atol=jtol)]
|
||||
if not j:
|
||||
continue
|
||||
if i == [0]: # only left edge
|
||||
if k:
|
||||
I = i[0]
|
||||
J = j[0]
|
||||
if i == [0]: # only left edge
|
||||
I = i[0]
|
||||
if k:
|
||||
K = k[0]
|
||||
while J < K:
|
||||
self.cells[J][I].left = True
|
||||
J += 1
|
||||
else:
|
||||
I = i[0]
|
||||
J = j[0]
|
||||
K = len(self.rows)
|
||||
while J < K:
|
||||
self.cells[J][I].left = True
|
||||
J += 1
|
||||
elif i == []: # only right edge
|
||||
if k:
|
||||
I = len(self.columns) - 1
|
||||
J = j[0]
|
||||
if k:
|
||||
K = k[0]
|
||||
while J < K:
|
||||
self.cells[J][I].right = True
|
||||
J += 1
|
||||
else:
|
||||
I = len(self.columns) - 1
|
||||
J = j[0]
|
||||
K = len(self.rows)
|
||||
while J < K:
|
||||
self.cells[J][I].right = True
|
||||
J += 1
|
||||
else: # both left and right edges
|
||||
if k:
|
||||
I = i[0]
|
||||
J = j[0]
|
||||
if k:
|
||||
K = k[0]
|
||||
while J < K:
|
||||
self.cells[J][I].left = True
|
||||
self.cells[J][I - 1].right = True
|
||||
J += 1
|
||||
else:
|
||||
I = i[0]
|
||||
J = j[0]
|
||||
K = len(self.rows)
|
||||
while J < K:
|
||||
self.cells[J][I].left = True
|
||||
|
|
@ -67,53 +66,48 @@ class Table:
|
|||
for h in horizontal:
|
||||
# find closest y coord
|
||||
# iterate over x coords and find closest points
|
||||
i = [i for i, t in enumerate(self.rows) if np.isclose(h[1], t[0], atol=2)]
|
||||
j = [j for j, t in enumerate(self.columns) if np.isclose(h[0], t[0], atol=2)]
|
||||
k = [k for k, t in enumerate(self.columns) if np.isclose(h[2], t[0], atol=2)]
|
||||
i = [i for i, t in enumerate(self.rows)
|
||||
if np.isclose(h[1], t[0], atol=jtol)]
|
||||
j = [j for j, t in enumerate(self.columns)
|
||||
if np.isclose(h[0], t[0], atol=jtol)]
|
||||
k = [k for k, t in enumerate(self.columns)
|
||||
if np.isclose(h[2], t[0], atol=jtol)]
|
||||
if not j:
|
||||
continue
|
||||
if i == [0]: # only top edge
|
||||
if k:
|
||||
I = i[0]
|
||||
J = j[0]
|
||||
if i == [0]: # only top edge
|
||||
I = i[0]
|
||||
if k:
|
||||
K = k[0]
|
||||
while J < K:
|
||||
self.cells[I][J].top = True
|
||||
J += 1
|
||||
else:
|
||||
I = i[0]
|
||||
J = j[0]
|
||||
K = len(self.columns)
|
||||
while J < K:
|
||||
self.cells[I][J].top = True
|
||||
J += 1
|
||||
elif i == []: # only bottom edge
|
||||
if k:
|
||||
I = len(self.rows) - 1
|
||||
J = j[0]
|
||||
if k:
|
||||
K = k[0]
|
||||
while J < K:
|
||||
self.cells[I][J].bottom = True
|
||||
J += 1
|
||||
else:
|
||||
I = len(self.rows) - 1
|
||||
J = j[0]
|
||||
K = len(self.columns)
|
||||
while J < K:
|
||||
self.cells[I][J].bottom = True
|
||||
J += 1
|
||||
else: # both top and bottom edges
|
||||
if k:
|
||||
I = i[0]
|
||||
J = j[0]
|
||||
if k:
|
||||
K = k[0]
|
||||
while J < K:
|
||||
self.cells[I][J].top = True
|
||||
self.cells[I - 1][J].bottom = True
|
||||
J += 1
|
||||
else:
|
||||
I = i[0]
|
||||
J = j[0]
|
||||
K = len(self.columns)
|
||||
while J < K:
|
||||
self.cells[I][J].top = True
|
||||
|
|
@ -128,24 +122,31 @@ class Table:
|
|||
bound = self.cells[i][j].get_bounded_edges()
|
||||
if bound == 4:
|
||||
continue
|
||||
|
||||
elif bound == 3:
|
||||
if not self.cells[i][j].left:
|
||||
if self.cells[i][j].right and self.cells[i][j].top and self.cells[i][j].bottom:
|
||||
self.cells[i][j].spanning_h = True
|
||||
|
||||
elif not self.cells[i][j].right:
|
||||
if self.cells[i][j].left and self.cells[i][j].top and self.cells[i][j].bottom:
|
||||
self.cells[i][j].spanning_h = True
|
||||
|
||||
elif not self.cells[i][j].top:
|
||||
if self.cells[i][j].left and self.cells[i][j].right and self.cells[i][j].bottom:
|
||||
self.cells[i][j].spanning_v = True
|
||||
|
||||
elif not self.cells[i][j].bottom:
|
||||
if self.cells[i][j].left and self.cells[i][j].right and self.cells[i][j].top:
|
||||
self.cells[i][j].spanning_v = True
|
||||
|
||||
elif bound == 2:
|
||||
if self.cells[i][j].left and self.cells[i][j].right:
|
||||
if not self.cells[i][j].top and not self.cells[i][j].bottom:
|
||||
self.cells[i][j].spanning_v = True
|
||||
|
||||
elif self.cells[i][j].top and self.cells[i][j].bottom:
|
||||
if not self.cells[i][j].left and not self.cells[i][j].right:
|
||||
self.cells[i][j].spanning_h = True
|
||||
|
||||
return self
|
||||
|
|
@ -0,0 +1,133 @@
|
|||
import numpy as np
|
||||
|
||||
|
||||
def translate(x1, x2):
|
||||
x2 += x1
|
||||
return x2
|
||||
|
||||
|
||||
def scale(x, s):
|
||||
x *= s
|
||||
return x
|
||||
|
||||
|
||||
def rotate(x1, y1, x2, y2, angle):
|
||||
s = np.sin(angle)
|
||||
c = np.cos(angle)
|
||||
x2 = translate(-x1, x2)
|
||||
y2 = translate(-y1, y2)
|
||||
xnew = c * x2 - s * y2
|
||||
ynew = s * x2 + c * y2
|
||||
xnew = translate(x1, xnew)
|
||||
ynew = translate(y1, ynew)
|
||||
return xnew, ynew
|
||||
|
||||
|
||||
def remove_close_values(ar, mtol):
|
||||
ret = []
|
||||
for a in ar:
|
||||
if not ret:
|
||||
ret.append(a)
|
||||
else:
|
||||
temp = ret[-1]
|
||||
if np.isclose(temp, a, atol=mtol):
|
||||
pass
|
||||
else:
|
||||
ret.append(a)
|
||||
return ret
|
||||
|
||||
|
||||
def merge_close_values(ar, mtol):
|
||||
ret = []
|
||||
for a in ar:
|
||||
if not ret:
|
||||
ret.append(a)
|
||||
else:
|
||||
temp = ret[-1]
|
||||
if np.isclose(temp, a, atol=mtol):
|
||||
temp = (temp + a) / 2.0
|
||||
ret[-1] = temp
|
||||
else:
|
||||
ret.append(a)
|
||||
return ret
|
||||
|
||||
|
||||
def get_row_idx(t, rows):
|
||||
for r in range(len(rows)):
|
||||
if (t.y0 + t.y1) / 2.0 < rows[r][0] and (t.y0 + t.y1) / 2.0 > rows[r][1]:
|
||||
return r
|
||||
|
||||
|
||||
def get_column_idx(t, columns):
|
||||
for c in range(len(columns)):
|
||||
if (t.x0 + t.x1) / 2.0 > columns[c][0] and (t.x0 + t.x1) / 2.0 < columns[c][1]:
|
||||
return c
|
||||
|
||||
|
||||
def reduce_index(t, rotated, r_idx, c_idx):
|
||||
if not rotated:
|
||||
if t.cells[r_idx][c_idx].spanning_h:
|
||||
while not t.cells[r_idx][c_idx].left:
|
||||
c_idx -= 1
|
||||
if t.cells[r_idx][c_idx].spanning_v:
|
||||
while not t.cells[r_idx][c_idx].top:
|
||||
r_idx -= 1
|
||||
elif rotated == 'left':
|
||||
if t.cells[r_idx][c_idx].spanning_h:
|
||||
while not t.cells[r_idx][c_idx].left:
|
||||
c_idx -= 1
|
||||
if t.cells[r_idx][c_idx].spanning_v:
|
||||
while not t.cells[r_idx][c_idx].bottom:
|
||||
r_idx += 1
|
||||
elif rotated == 'right':
|
||||
if t.cells[r_idx][c_idx].spanning_h:
|
||||
while not t.cells[r_idx][c_idx].right:
|
||||
c_idx += 1
|
||||
if t.cells[r_idx][c_idx].spanning_v:
|
||||
while not t.cells[r_idx][c_idx].top:
|
||||
r_idx -= 1
|
||||
return r_idx, c_idx
|
||||
|
||||
|
||||
def outline(t):
|
||||
for i in range(len(t.cells)):
|
||||
t.cells[i][0].left = True
|
||||
t.cells[i][len(t.cells[i]) - 1].right = True
|
||||
for i in range(len(t.cells[0])):
|
||||
t.cells[0][i].top = True
|
||||
t.cells[len(t.cells) - 1][i].bottom = True
|
||||
return t
|
||||
|
||||
|
||||
def fill(t, f):
|
||||
if f == "h":
|
||||
for i in range(len(t.cells)):
|
||||
for j in range(len(t.cells[i])):
|
||||
if t.cells[i][j].get_text().strip() == '':
|
||||
if t.cells[i][j].spanning_h:
|
||||
t.cells[i][j].add_text(t.cells[i][j - 1].get_text())
|
||||
elif f == "v":
|
||||
for i in range(len(t.cells)):
|
||||
for j in range(len(t.cells[i])):
|
||||
if t.cells[i][j].get_text().strip() == '':
|
||||
if t.cells[i][j].spanning_v:
|
||||
t.cells[i][j].add_text(t.cells[i - 1][j].get_text())
|
||||
elif f == "hv":
|
||||
for i in range(len(t.cells)):
|
||||
for j in range(len(t.cells[i])):
|
||||
if t.cells[i][j].get_text().strip() == '':
|
||||
if t.cells[i][j].spanning_h:
|
||||
t.cells[i][j].add_text(t.cells[i][j - 1].get_text())
|
||||
elif t.cells[i][j].spanning_v:
|
||||
t.cells[i][j].add_text(t.cells[i - 1][j].get_text())
|
||||
return t
|
||||
|
||||
|
||||
def remove_empty(d):
|
||||
for i, row in enumerate(d):
|
||||
if row == [''] * len(row):
|
||||
d.pop(i)
|
||||
d = zip(*d)
|
||||
d = [list(row) for row in d if any(row)]
|
||||
d = zip(*d)
|
||||
return d
|
||||
Loading…
Reference in New Issue